高中数学

如图,在四棱锥中,底面ABCD是菱形,,侧面底面ABCD,并且,F为SD的中点.

(1)证明:平面FAC;
(2)求三棱锥的体积.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

在如图所示的几何体中,四边形ABCD为矩形,AB=2BC=4,BF=CF=AE=DE,EF=2,EF//AB,AF⊥CF.

(1)若G为FC的中点,证明:AF//平面BDG;
(2)求平面ABF与平面BCF夹角的余弦值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,已知四棱锥平面中点.

(Ⅰ)求证:平面
(Ⅱ)求证:平面平面

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,已知四棱锥P-ABCD的底面是直角梯形,∠ABC=∠BCD=90°,AB=BC=PB=PC=2CD=2,侧面PBC⊥底面ABCD,点M在AB上,且,E为PB的中点.

(1)求证:CE∥平面ADP;
(2)求证:平面PAD⊥平面PAB;
(3)棱AP上是否存在一点N,使得平面DMN⊥平面ABCD,若存在,求出的值;若不存在,请说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图:已知正方形ABCD的边长为2,且AE⊥平面CDE,AD与平面CDE所成角为

(1)求证:AB∥平面CDE;
(2)求三棱锥D-ACE的体积.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图所示,已知ABCD为梯形,,且为线段PC上一点.

(1)当时,证明:
(2)设平面,证明:
(3)在棱PC上是否存在点,使得,若存在,请确定点的位置;若不存在,请说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在四棱锥中,底面是正方形,侧面底面,且分别为的中点.

(Ⅰ)求证:直线∥平面
(Ⅱ)求证:直线平面

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,三棱锥中,平面,点分别为的中点.

(1)求证:平面
(2)在线段上的点,且平面
①确定点的位置;
②求直线与平面所成角的正切值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,四棱锥中,侧面是边长为2的正三角形,底面是菱形,,点在底面上的射影为的重心,点为线段上的点.

(1)当点的中点时,求证:平面
(2)当平面与平面所成锐二面角的余弦值为时,求的值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,四棱锥中,分别为的中点,

(1)证明:
(2)求面与面所成锐角的余弦值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

棱柱的所有棱长都为2,,平面⊥平面

(1)证明:
(2)求锐二面角的平面角的余弦值;
(3)在直线上是否存在点,使得∥平面,若存在求出的位置.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,三棱锥中,⊥底面的中点,的中点,点上,且

(1)求证:⊥平面
(2)求证:∥平面

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,已知四棱锥,底面四边形为菱形,分别是线段的中点.

(1)求证:∥平面
(2)求异面直线所成角的大小.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知正方体是底对角线的交点,求证:

(1)∥面
(2)⊥面

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知矩形中,分别在上,且,沿将四边形折成四边形,使点在平面上的射影在直线上.

(1)求证:平面
(2)求二面角的大小.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

高中数学平行线法解答题