高中数学

如图,AB为圆O的直径,点E、F在圆O上,且AB∥EF,矩形ABCD所在的平面和圆O所在的平面互相垂直,且AB=2,AD=EF=AF=1.

(1)求四棱锥F﹣ABCD的体积VF﹣ABCD
(2)求证:平面AFC⊥平面CBF;
(3)在线段CF上是否存在一点M,使得OM∥平面ADF,并说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,三棱柱的三视图,主视图和侧视图是全等的矩形,俯视图是等腰直角三角形,点M是A1B1的中点.

(1)求证:B1C//平面AC1M;
(2)求证:平面AC1M⊥平面AA1B1B.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,四棱锥中,底面为矩形,平面的中点.

(1)证明:平面
(2)设,三棱锥的体积,求到平面的距离.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,已知四棱锥的底面是正方形,侧棱底面

(1)若的中点.证明:平面
(2)若二面角的余弦值为,试求的值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图所示,已知空间四边形的每条边和对角线长都等于1,点分别是的中点,计算:

(1)
(2)的长;
(3)异面直线所成角的余弦值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,四棱锥,平面⊥平面,△是边长为2的等边三角形,底面是矩形,且

(1)若点的中点,求证:平面
(2)试问点在线段上什么位置时,二面角的大小为

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,已知正方形和矩形所在平面互相垂直,是线段的中点.用向量方法证明与解答:

(1)求证:∥平面
(2)试判断在线段上是否存在一点,使得直线所成角为,并说明理由.  

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图(1)示,在梯形中,,且,如图(2)沿将四边形折起,使得平面与平面垂直,的中点.

(Ⅰ)求证:
(Ⅱ)求证:
(Ⅲ)求点D到平面BCE的距离。

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在四棱锥中,底面为菱形,的中点.

(1)若,求证:平面平面
(2)设点是线段上的一点,,且平面
(1)求实数的值;
(2)若,且平面平面,求二面角的大小.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,四边形为矩形,

(1)
(2)

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

的中点,求:

(1)
(2)

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

正方体中.

(1)求证:平面平面
(2)若分别是的中点,求证:平面平面

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在正方体中,上不同于的任一点, ,求证:

(1)平面;(2)

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在正方体的棱长为为棱上的一动点.

(1)若为棱的中点,
①求四棱锥的体积  
②求证:面
(2)若,求证:为棱的中点.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在直三棱柱中,分别是棱上的点(点不同于点),且的中点.

求证:(1)平面平面
(2)直线平面

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

高中数学平行线法解答题