如图,AB为圆O的直径,点E、F在圆O上,且AB∥EF,矩形ABCD所在的平面和圆O所在的平面互相垂直,且AB=2,AD=EF=AF=1.
(1)求四棱锥F﹣ABCD的体积VF﹣ABCD;
(2)求证:平面AFC⊥平面CBF;
(3)在线段CF上是否存在一点M,使得OM∥平面ADF,并说明理由.
如图,三棱柱的三视图,主视图和侧视图是全等的矩形,俯视图是等腰直角三角形,点M是A1B1的中点.
(1)求证:B1C//平面AC1M;
(2)求证:平面AC1M⊥平面AA1B1B.
如图所示,已知空间四边形的每条边和对角线长都等于1,点,,分别是、、的中点,计算:
(1);
(2)的长;
(3)异面直线与所成角的余弦值.
如图,四棱锥,平面⊥平面,△是边长为2的等边三角形,底面是矩形,且.
(1)若点是的中点,求证:平面;
(2)试问点在线段上什么位置时,二面角的大小为.
如图,已知正方形和矩形所在平面互相垂直,,,是线段的中点.用向量方法证明与解答:
(1)求证:∥平面;
(2)试判断在线段上是否存在一点,使得直线与所成角为,并说明理由.
如图(1)示,在梯形中,,,且,如图(2)沿将四边形折起,使得平面与平面垂直,为的中点.
(Ⅰ)求证:
(Ⅱ)求证:;
(Ⅲ)求点D到平面BCE的距离。
如图,在四棱锥中,底面为菱形,,为的中点.
(1)若,求证:平面平面;
(2)设点是线段上的一点,,且平面.
(1)求实数的值;
(2)若,且平面平面,求二面角的大小.
如图,在正方体的棱长为,为棱上的一动点.
(1)若为棱的中点,
①求四棱锥的体积
②求证:面面
(2)若面,求证:为棱的中点.