如图所示,已知ABCD为梯形,,且,为线段PC上一点.(1)当时,证明:;(2)设平面,证明:(3)在棱PC上是否存在点,使得,若存在,请确定点的位置;若不存在,请说明理由.
如图,圆与离心率为的椭圆()相切于点.(Ⅰ)求椭圆的方程;(Ⅱ)过点引两条互相垂直的两直线、与两曲线分别交于点、与点、(均不重合).(ⅰ)若为椭圆上任一点,记点到两直线的距离分别为、,求的最大值;(ⅱ)若,求与的方程.
已知函数,其中.(Ⅰ)若是函数的极值点,求实数的值;(Ⅱ)若对任意的(为自然对数的底数)都有成立,求实数的取值范围.
设是各项都为正数的等比数列, 是等差数列,且,(Ⅰ)求数列,的通项公式;(Ⅱ)设数列的前项和为,求数列的前项和.
四名教师被分到甲、乙、丙三所学校参加工作,每所学校至少一名教师.(Ⅰ)求、两名教师被同时分配到甲学校的概率;(Ⅱ)求、两名教师不在同一学校的概率;(Ⅲ)设随机变量为这四名教师中分配到甲学校的人数,求的分布列和数学期望.
已知函数(其中>0),且函数的最小正周期为.(Ⅰ)求的值;(Ⅱ)求函数在区间上的最大值和最小值.