如图,直三棱柱ABC﹣A1B1C1中,AC⊥BC,AC=BC=CC1=2,M,N分别为AC,B1C1的中点.
(Ⅰ)求证:MN∥平面ABB1A1;
(Ⅱ)线段CC1上是否存在点Q,使A1B⊥平面MNQ?说明理由.
如图,四边形ABEF是等腰梯形,AB∥EF,AF=BE=2,EF=4,AB=2,ABCD是矩形.AD⊥平面ABEF,其中Q,M分别是AC,EF的中点,P是BM中点.
(1)求证:PQ∥平面BCE;
(2)求证:AM⊥平面BCM;
(3)求点F到平面BCE的距离.
如图(1),在三角形ABC中,,,点O、M、N分别为线段的中点,将ABO和MNC分别沿BO,MN折起,使平面ABO与平面CMN都与底面OMNB垂直,如图(2)所示.
(1)求证:平面CMN;
(2)求点M到平面CAN的距离.
如图,在四棱锥P-ABCD 中,AB∥CD ,AB⊥AD,CD=2AB,平面PAD⊥底面ABCD,PA⊥AD,E和F分别为CD和PC的中点.求证:
(1)BE∥平面PAD;
(2)平面BEF⊥平面PCD.
在如图所示的几何体中,四边形是菱形,是矩形,平面⊥平面,是的中点.
(1)求证:∥平面;
(2)在线段上是否存在点,使二面角的大小为?若存在,求出的长;若不存在,请说明理由.
如图,在正方体ABCD﹣A1B1C1D1中,AA1=2,E为AA1的中点,O是BD1的中点.
(Ⅰ)求证:平面A1BD1⊥平面ABB1A1;
(Ⅱ)求证:EO∥平面ABCD.
如图,A,B,C,D四点在同一圆上,AD的延长线与BC的延长线交于E点,且.
(1)证明:;
(2)延长CD到F,延长DC到G,使得,证明:A,B,G,F四点共圆.
在四棱锥中,平面,底面为直角梯形,,,且为的中点.
(1)求证:平面;
(2)求直线与平面所成角的正切值.
如图,在三棱锥中,,,点,分别为, 的中点.
(1)求证:直线平面;
(2)求证:.
如图,已知直三棱柱中,,、分别为、中点,.
(1)求证:平面;
(2)求证:平面平面