高中数学

(本小题满分12分)已知四棱锥中,底面是直角梯形, 平面平面R、S分别是棱AB、PC的中点, 

(Ⅰ)求证:平面平面
(Ⅱ)求证:平面
(Ⅲ)若点在线段上,且平面求三棱锥的体积.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在三棱柱中,侧棱底面的中点,.

(Ⅰ)求证://平面
(Ⅱ)设,求四棱锥的体积.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,已知平面ABC,AB=AC=3,,, 点E,F分别是BC, 的中点.

(I)求证:EF 平面 ;
(II)求证:平面平面
(III)求直线 与平面所成角的大小.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,正方形ADEF与梯形ABCD所在的平面互相垂直,AD丄CD,AB//CD,AB=AD=CD=2,点M在线段EC上.

(I)当点M为EC中点时,求证: 面;
(II)求证:平面BDE丄平面BEC;
(III)若平面说BDM与平面ABF所成二面角锐角,且该二面角的余弦值为时,求三棱锥M-BDE的体积.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

在直三棱柱中,AB=AC,D,E为棱的中点

(1)证明:平面
(2)证明:

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

在四棱锥P﹣ABCD中,PA⊥平面ABCD,△ABC是正三角形,AC与BD的交点M恰好是AC中点,又PA=AB=4,∠CDA=120°.

(1)求证:BD⊥PC;
(2)设E为PC的中点,点F在线段AB上,若直线EF∥平面PAD,求AF的长;
(3)求二面角A﹣PC﹣B的余弦值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,已知分别是正方形的中点,交于点都垂直于平面,且是线段上一动点.

(Ⅰ)求证:平面平面
(Ⅱ)若平面,试求的值;
(Ⅲ)当中点时,求二面角的余弦值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,直三棱柱ABC﹣A1B1C1中,AC⊥BC,AC=BC=CC1=2,M,N分别为AC,B1C1的中点.

(Ⅰ)求证:MN∥平面ABB1A1
(Ⅱ)线段CC1上是否存在点Q,使A1B⊥平面MNQ?说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

在正三棱锥中,分别为棱的中点,且

(1)求证:直线平面
(2)求证:平面平面

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

在如图所示的几何体中,四边形是菱形,是矩形,平面⊥平面的中点.

(1)求证:∥平面
(2)在线段上是否存在点,使二面角的大小为?若存在,求出的长;若不存在,请说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,已知直三棱柱中,分别为中点,.

(1)求证:平面
(2)求证:平面平面

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

在如图所示的几何体中,四边形ABCD为矩形,AB=2BC=4,BF=CF=AE=DE,EF=2,EF//AB,AF⊥CF.

(1)若G为FC的中点,证明:AF//平面BDG;
(2)求平面ABF与平面BCF夹角的余弦值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在三棱柱中,底面,点的中点. 

(Ⅰ)求证:
(Ⅱ)求证:∥平面
(Ⅲ)设,在线段上是否存在点,使得?若存在,确定点的位置;                         若不存在,说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在正方体中,的中点,的中点.

(Ⅰ)求证:平面⊥平面
(Ⅱ)求证:∥平面

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分12分)如图所示,在直三棱柱ABC-A1B1C1中,AC⊥BC.

(1)求证:平面AB1C1⊥平面AC1
(2)若AB1⊥A1C,求线段AC与AA1长度之比;
(3)若D是棱CC1的中点,问在棱AB上是否存在一点E,使DE∥平面AB1C1?若存在,试确定点E的位置;若不存在,请说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

高中数学平行线法解答题