在四棱锥P﹣ABCD中,PA⊥平面ABCD,△ABC是正三角形,AC与BD的交点M恰好是AC中点,又PA=AB=4,∠CDA=120°.(1)求证:BD⊥PC;(2)设E为PC的中点,点F在线段AB上,若直线EF∥平面PAD,求AF的长;(3)求二面角A﹣PC﹣B的余弦值.
假定某射手每次射击命中的概率为,且只有发子弹.该射手一旦射中目标,就停止射击,否则就一直独立地射击到子弹用完.设耗用子弹数为 求:(1)目标被击中的概率; (2)的概率分布; (3)均值.
(本题满分15分,请列式并用数字表示结果,直接写结果不得分) 从5名女同学和4名男同学中选出4人参加四场不同的演讲,分别按下列要求,各有多少种不同选法? (1)男、女同学各2名; (2)男、女同学分别至少有1名; (3)在(2)的前提下,男同学甲与女同学乙不能同时选出.
已知z为复数,z+2和均为实数,其中是虚数单位. (1)求复数z; (2)若复数在复平面上对应的点在第一象限,求实数a的取值范围.
函数的图象在处的切线方程为 (1)求函数的解析式; (2) 求函数的单调递减区间。
已知二次函数对任意实数,都有,且时,有成立,(1)证明f(2)=2;(2)若,求f(x)的表达式;⑶ 在题(2)的条件下设,若图象上的点都位于直线的上方,求实数m的取值范围.