在四棱锥P﹣ABCD中,PA⊥平面ABCD,△ABC是正三角形,AC与BD的交点M恰好是AC中点,又PA=AB=4,∠CDA=120°.(1)求证:BD⊥PC;(2)设E为PC的中点,点F在线段AB上,若直线EF∥平面PAD,求AF的长;(3)求二面角A﹣PC﹣B的余弦值.
已知,求函数的最小值及相应的的值。
已知函数,其中为实数.(1)若在处取得的极值为,求的值;(2)若在区间上为减函数,且,求的取值范围。
已知函数(1)求的最小正周期和最大值;(2)将的图像向右平移个单位得到函数的图像,求在上的零点。
(本小题满分12分)如图所示,已知圆为圆上一动点,点P在AM上,点N在CM上,且满足,点N的轨迹为曲线E。(Ⅰ)求曲线E的方程;(Ⅱ)若过定点F(0,2)的直线交曲线E于不同的两点G、H(点G在点F、H之间),且满足的取值范围。
(本小题满分12分)设函数(Ⅰ)求函数的最值;(Ⅱ)给出定理:如果函数上连续,并且有,那么,函数内有零点,即存在运用上述定理判断,当时,函数内是否存在零点。