(本小题满分12分)如图所示,在直三棱柱ABC-A1B1C1中,AC⊥BC.(1)求证:平面AB1C1⊥平面AC1;(2)若AB1⊥A1C,求线段AC与AA1长度之比;(3)若D是棱CC1的中点,问在棱AB上是否存在一点E,使DE∥平面AB1C1?若存在,试确定点E的位置;若不存在,请说明理由.
某机床厂今年年初用98万元购进一台数控机床,并立即投入生产使用,计划第一年维修、保养费用12万元,从第二年开始,每年所需维修、保养费用比上一年增加4万元,该机床使用后,每年的总收入为50万元,设使用x年后数控机床的盈利额为y万元. (1)写出y与x之间的函数关系式; (2)从第几年开始,该机床开始盈利(盈利额为正值) (3)使用若干年后,对机床的处理方案有两种:(Ⅰ)当年平均盈利额达到最大值时,以30万元价格处理该机床;(Ⅱ)当盈利额达到最大值时,以12万元价格处理该机床. 请你研究一下哪种方案处理较为合理?请说明理由.
已知二次函数满足,且关于的方程的两实数根分别在区间(-3,-2),(0,1)内。 (1)求实数的取值范围;(2)若函数在区间(-1-,1-)上具有单调性,求实数C的取值范围
定义在R上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,且对任意的a、b∈R,有f(a+b)=f(a)f(b), (1)求证:f(0)=1;(2)求证:对任意的x∈R,恒有f(x)>0; (3)证明:f(x)是R上的增函数;(4)若f(x)·f(2x-x2)>1,求x的取值范围。
设全集,集合,,求
已知集合表示和中所有不同值的个数. (I)已知集合; (II)若集合; (III)求的最小值.