高中数学

(本小题满分12分)在正三棱锥中,分别为棱的中点,且

(1)求证:直线平面
(2)求证:平面平面

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在四棱锥中,平面ABCD,底面ABCD是菱形,.

(1)求证:平面PAC;
(2)若,求所成角的余弦值;
(3)当平面PBC与平面PDC垂直时,求PA的长.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,在直三棱柱中,AB=AC=5,D,E分别为BC, 的中点,四边形是边长为6的正方形.

(1)求证:∥平面
(2)求证:⊥平面
(3)求平面与平面的夹角的余弦值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图1,在直角梯形中,. 把沿对角线折起到的位置,如图2所示,使得点在平面上的正投影恰好落在线段上,连接,点分别为线段的中点.

(1)求证:平面平面
(2)求直线与平面所成角的正弦值;
(3)在棱上是否存在一点,使得到点四点的距离相等?请说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,在三棱锥中,已知是正三角形,平面的中点,在棱上,且

(1)求证:平面
(2)若的中点,问上是否存在一点,使平面?若存在,说明点的位置;若不存在,试说明理由;

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,已知四棱锥中,底面是直角梯形,平面. 

(Ⅰ)求证:平面
(Ⅱ)求证:平面
(Ⅲ)若的中点,求三棱锥的体积.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知菱形所在平面,点分别为线段的中点.   

(Ⅰ)求证:
(Ⅱ)求证:∥平面

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,直三棱柱ABC﹣A1B1C1中,AC⊥BC,AC=BC=CC1=2,M,N分别为AC,B1C1的中点.

(Ⅰ)求证:MN∥平面ABB1A1
(Ⅱ)线段CC1上是否存在点Q,使A1B⊥平面MNQ?说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

在正三棱锥中,分别为棱的中点,且

(1)求证:直线平面
(2)求证:平面平面

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

在如图所示的几何体中,四边形是菱形,是矩形,平面⊥平面的中点.

(1)求证:∥平面
(2)在线段上是否存在点,使二面角的大小为?若存在,求出的长;若不存在,请说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,已知直三棱柱中,分别为中点,.

(1)求证:平面
(2)求证:平面平面

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

在如图所示的几何体中,四边形ABCD为矩形,AB=2BC=4,BF=CF=AE=DE,EF=2,EF//AB,AF⊥CF.

(1)若G为FC的中点,证明:AF//平面BDG;
(2)求平面ABF与平面BCF夹角的余弦值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在三棱柱中,底面,点的中点. 

(Ⅰ)求证:
(Ⅱ)求证:∥平面
(Ⅲ)设,在线段上是否存在点,使得?若存在,确定点的位置;                         若不存在,说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在正方体中,的中点,的中点.

(Ⅰ)求证:平面⊥平面
(Ⅱ)求证:∥平面

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分12分)如图所示,在直三棱柱ABC-A1B1C1中,AC⊥BC.

(1)求证:平面AB1C1⊥平面AC1
(2)若AB1⊥A1C,求线段AC与AA1长度之比;
(3)若D是棱CC1的中点,问在棱AB上是否存在一点E,使DE∥平面AB1C1?若存在,试确定点E的位置;若不存在,请说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

高中数学平行线法解答题