如图,在四棱锥中,平面ABCD,底面ABCD是菱形,,.(1)求证:平面PAC;(2)若,求与所成角的余弦值;(3)当平面PBC与平面PDC垂直时,求PA的长.
在数列中,,(Ⅰ)求,判断数列的单调性并证明;(Ⅱ)求证:;(Ⅲ)是否存在常数,对任意,有?若存在,求出的值;若不存在,请说明理由.
已知直线与椭圆相交于两个不同的点,记与轴的交点为.(Ⅰ)若,且,求实数的值;(Ⅱ)若,求面积的最大值,及此时椭圆的方程.
在四棱锥中,平面,是正三角形,与的交点恰好是中点,又,,点在线段上,且.(Ⅰ)求证:平面; (Ⅱ)求直线与平面所成角的正弦值.
已知函数.(Ⅰ)求函数的最小正周期;(Ⅱ)当 ,求函数的值域.