如图,在四棱锥中,平面ABCD,底面ABCD是菱形,,.(1)求证:平面PAC;(2)若,求与所成角的余弦值;(3)当平面PBC与平面PDC垂直时,求PA的长.
(本题10分)中心在原点,焦点在x轴上的椭圆C上的点到焦点距离的最大值为3,最小值为1.(Ⅰ)求椭圆C的方程;(Ⅱ)若直线与椭圆C相交于A,B两点(A,B不是左右顶点),且以AB为直径的圆过 椭圆C的右顶点.求证:直线l过定点,并求该定点的坐标.
(本题10分)设.若在 存在单调增区间,求a的取值范围.
(本题8分) 已知直线被抛物线C:截得的弦长. (Ⅰ)求抛物线C的方程; (Ⅱ)若抛物线C的焦点为F,求三角形ABF的面积.
(本题8分) 设函数定义在上,,导函数, . 求的单调区间和最小值.
数列,()由下列条件确定:①;②当时,与满足:当时,,;当时,,.(Ⅰ)若,,写出,并求数列的通项公式; (Ⅱ)在数列中,若(,且),试用表示;(Ⅲ)在(Ⅰ)的条件下,设数列满足,,(其中为给定的不小于2的整数),求证:当时,恒有.