(本题10分)中心在原点,焦点在x轴上的椭圆C上的点到焦点距离的最大值为3,最小值为1.(Ⅰ)求椭圆C的方程;(Ⅱ)若直线与椭圆C相交于A,B两点(A,B不是左右顶点),且以AB为直径的圆过 椭圆C的右顶点.求证:直线l过定点,并求该定点的坐标.
在正三角形ABC中,E、F、P分别是AB、AC、BC边上的点,满足AE:EB=CF:FA=CP:PB=1:2(如图1)。将△AEF沿EF折起到的位置,使二面角A1-EF-B成直二面角,连结A1B、A1P(如图2) (Ⅰ)求证:A1E⊥平面BEP; (Ⅱ)求二面角A1-BP-E的大小。
已知三棱柱的三视图如图所示,其中正视图和侧视图均为矩形,俯视图中,。 (I)在三棱柱中,求证:; (II)在三棱柱中,若是底边的中点,求证:平面;
(10分)已知圆C与圆相交,所得公共弦平行于已知直线,又圆C经过点A(-2,3),B(1,4),求圆C的方程。
(10分)△ABC中,已知三个顶点的坐标分别是A(,0),B(6,0),C(6,5), (1)求AC边上的高线BH所在的直线方程; (2)求的角平分线所在直线的方程。
(本小题满分12分)设递增等比数列{}的前n项和为,且=3,=13,数列{}满足=,点P(,)在直线x-y+2=0上,n∈N﹡ (Ⅰ)求数列{},{}的通项公式 (Ⅱ)设=,数列{}的前n项和,若>2a-1恒成立(n∈N﹡),求实数a的取值范围.