甲、乙两人独立地破译1个密码,他们能译出密码的概率分别为和,求(1)恰有1人译出密码的概率;(2)若达到译出密码的概率为,至少需要多少乙这样的人.
已知椭圆G的中心在坐标原点,长轴在轴上,离心率为,两个焦点分别为和,椭圆G上一点到和的距离之和为12. 圆:的圆心为点. (1)求椭圆G的方程 (2)求的面积 (3)问是否存在圆包围椭圆G?请说明理由.
已知集合 (1)当A=B时,求实数的值; (2)当时,求实数的取值范围。
已知顶点在原点, 焦点在x轴上的抛物线被直线y=2x+1截得的弦长为,求抛物线的方程.
如图正方体ABCD-中,E、F、G分别是、AB、BC的中点. (1)证明:⊥平面AEG; (2)求,
写出下列命题的否定: (1)所有自然数的平方是正数 (2)任何实数x都是方程5x-12=0的根 (3)对于任意实数x,存在实数y,使x+y>0 (4)有些质数是奇数