如图1,在直角梯形中,,,,. 把沿对角线折起到的位置,如图2所示,使得点在平面上的正投影恰好落在线段上,连接,点分别为线段的中点. (1)求证:平面平面;(2)求直线与平面所成角的正弦值;(3)在棱上是否存在一点,使得到点四点的距离相等?请说明理由.
(本小题满分12分)已知函数. (1)若函数,求函数的单调区间; (2)设直线为函数的图像上点处的切线,证明:在区间上存在唯一,直线与曲线相切.
(本小题满分12分)若函数的图象与直线为常数)相切,并且切点的横坐标依次成等差数列,且公差为. (1)求的值; (2)若点是图象的对称中心,且,求点A的坐标.
(本小题满分12分)已知函数. (1)求的单调区间; (2)设,若在上不单调且仅在处取得最大值,求的取值范围.
(本小题满分12分)已知函数. (1)求函数的最小正周期和单调递增区间; (2)若在中,角,,的对边分别为,,,,为锐角,且,求面积的最大值.
设命题在区间上是减函数;命题是方程的两个实根,且不等式对任意的实数恒成立,若为真,试求实数的取值范围.