(本小题满分12分)已知四棱锥中,底面是直角梯形, 平面平面R、S分别是棱AB、PC的中点, (Ⅰ)求证:平面平面(Ⅱ)求证:平面(Ⅲ)若点在线段上,且平面求三棱锥的体积.
已知二次函数,及函数。 关于的不等式的解集为,其中为正常数。 (1)求的值; (2)R如何取值时,函数存在极值点,并求出极值点; (3)若,且,求证:。
已知函数, (1)若x=1时取得极值,求实数的值; (2)当时,求在上的最小值; (3)若对任意,直线都不是曲线的切线,求实数的取值范围。
已知函数,其中,. (1)当时,求曲线在点处的切线方程; (2)求的单调区间.(要写推理过程)
设函数对任意实数x 、y都有, (1)求的值; (2)若,求、、的值; (3)在(2)的条件下,猜想的表达式,并用数学归纳法加以证明。
已知二项式 (1)当n=4时,写出该二项式的展开式; (2)若展开式的前三项的二项式系数的和等于79,则展开式中第几项的二项式系数最大?