高中数学

(本小题满分15分)如图,已知平面
为等边三角形.

(Ⅰ)求证:平面平面
(Ⅱ)求与平面所成角的正弦值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图所示,AD⊥平面ABC,CE⊥平面ABC,AC=AD=AB=1,,凸多面体ABCED的体积为,F为BC的中点.

(1)求证:AF∥平面BDE;
(2)求证:平面BDE⊥平面BCE.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,已知四棱锥S-A BCD是由直角梯形沿着CD折叠而成,其中SD=DA=AB=BC=l,AS∥BC,A⊥AD,且二面角S-CD-A的大小为120o

(Ⅰ)求证:平面ASD⊥平面ABCD;
(Ⅱ)设侧棱SC和底面ABCD所成角为,求的正弦值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在平行四边形中,的中点,将沿直线折起到的位置,使平面平面

(1)证明:CEPD;
(2)设分别为的中点,求直线与平面所成的角.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,三棱锥 P - A B C 中,平面 P A C 平面 A B C A B C = π 2 ,点 D , E 在线段 A C 上,且 A D = D E = E C = 2 , P D = P C = 4 ,点 F 在线段 A B 上,且 E F B C .
image.png

(Ⅰ)证明: A B 平面 P F E .
(Ⅱ)若四棱锥 P - D F B C 的体积为7,求线段 B C 的长.

来源:2015年全国普通高等学校招生统一考试文科数学
  • 更新:2022-08-27
  • 题型:未知
  • 难度:未知

如图,已知六棱锥P﹣ABCDEF的底面是正六边形,PA⊥平面ABC,PA=2AB则下列结论正确的是( )

A.PB⊥AD
B.平面PAB⊥平面PBC
C.直线BC∥平面PAE
D.直线PD与平面ABC所成的角为45°
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题共12分)已知E是矩形ABCD(如图1)边CD上的一点,现沿AE将△DAE折起至△D1AE(如图2),并且平面D1AE⊥平面ABCE,图3为四棱锥D1—ABCE的主视图与左视图.


(1)求证:直线BE⊥平面D1AE;
(2)求点A到平面D1BC的距离.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,四棱锥中,底面ABCD为菱形,且.

(1)求证:
(2)若,求点C到平面PBD的距离.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知两直线.试确定的值,使
(1)相交于点
(2)
(3),且轴上的截距为-1.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在四棱锥中,底面ABCD为菱形,,Q为AD的中点,.

(1)求证:平面PQB;
(2)点M在线段PC上,,试确定t的值,使平面MQB.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在长方体ABCD-A1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上移动.

(1)证明:D1E⊥A1D;
(2)当E为AB的中点时,求点E到面ACD1的距离;
(3)AE等于何值时,二面角D1-EC-D的大小为

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在四棱锥中,,平面底面分别是的中点,求证:

(1)底面
(2)平面

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,三棱柱中,平面ABC,ABBC , 点M , N分别为A1C1与A1B的中点.

(Ⅰ)求证:MN平面BCC1B1;
(Ⅱ)求证:平面A1BC平面A1ABB1

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

棱柱的所有棱长都为2,,平面⊥平面

(1)证明:
(2)求锐二面角的平面角的余弦值;
(3)在直线上是否存在点,使得∥平面,若存在求出的位置.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分12分)如图,正四棱锥的底面是边长为的正方形,侧棱长是底面边长为倍,为底面对角线的交点,为侧棱上的点.

(1)求证:
(2)的中点,若平面,求证:平面

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

高中数学空间向量的应用试题