高中数学

如图,已知六棱锥P﹣ABCDEF的底面是正六边形,PA⊥平面ABC,PA=2AB则下列结论正确的是( )

A.PB⊥AD
B.平面PAB⊥平面PBC
C.直线BC∥平面PAE
D.直线PD与平面ABC所成的角为45°
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图所示,在直三棱柱ABC-A1B1C1中, BC="AC" ,AC1⊥A1B,M,N分别是A1B1,AB的中点,给出下列结论:①C1M⊥平面A1ABB1,②A1B⊥NB1  ,③平面AMC1⊥平面CBA1 ,其中正确结论的个数为 (  )     

A.0 B.1 C.2 D.3
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知两条直线,两个平面,下面四个命题中不正确的是

A.
B.
C.
D.
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图所示,在直三棱柱ABC-A1B1C1中,BC=AC,AC1⊥A1B,M,N分别是A1B1,AB的中点,给出下列结论:①C1M⊥平面A1ABB1②A1B⊥NB1 ,③平面AMC1//平面CNB1,  其中正确结论的个数为  (  )

A.0 B.1 C.2 D.3
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

在四棱柱中,平面,底面是边长为的正方形,侧棱的长为为侧棱上的动点(包括端点),则(  )

A.对任意的,存在点,使得
B.当且仅当时,存在点,使得
C.当且仅当时,存在点,使得
D.当且仅当时,存在点,使得
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如下图,在平行四边形ABCD中,AD=2AB=2,∠BAC=90°.将△ACD沿AC折起,使得BD=.在三棱锥D-ABC的四个面中,下列关于垂直关系的叙述错误的是(    )

A.面ABD⊥面BCD B.面ABD⊥面ACD
C.面ABC⊥面ACD D.面ABC⊥面BCD
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,等边三角形的中线与中位线相交于,已知是△旋转过程中的一个图形,下列命题中,错误的是(    )

A.动点在平面上的射影在线段
B.恒有平面⊥平面
C.三棱锥的体积有最大值
D.异面直线不可能垂直

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,正方体ABCD-A1B1C1D1的棱长为1,线段B1D1上有两个动点E,F,且EF=,则下列结论中错误的个数是(  )

(1) AC⊥BE.
(2) 若P为AA1上的一点,则P到平面BEF的距离为.
(3) 三棱锥A-BEF的体积为定值.
(4) 在空间与DD1,AC,B1C1都相交的直线有无数条.
(5) 过CC1的中点与直线AC1所成角为40并且与平面BEF所成角为50的直线有2条.

A.0 B.1 C.2 D.3
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

下面四个命题:
  ①“直线a∥直线b”的充要条件是“a平行于b所在的平面”;
②“直线⊥平面内所有直线”的充要条件是“⊥平面”;
③“直线ab为异面直线”的充分不必要条件是“直线ab不相交”;
④“平面∥平面”的必要不充分条件是“内存在不共线三点到的距离相等”;
其中正确命题的序号是

A.①② B.②③ C.③④ D.②④
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知是直线,是平面,,则“平面”是“”的 …………………………………………………………………………  (   )

A.充要条件. B.充分非必要条件. C.必要非充分条件. D.非充分非必要条件
来源:
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

圆锥的轴截面SAB是边长为2的等边三角形,O为底面中心,M为SO的中点,动点P在圆锥底面内(包括圆周)。若AM⊥MP,则P点形成的轨迹的长度为(    )

A. B. C. 3 D.
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

高中数学空间向量的应用选择题