已知正四棱柱中,.
(Ⅰ)求证:;
(Ⅱ)求钝二面角的余弦值;
(Ⅲ)在线段上是否存在点,使得平面平面,若存在,求出的值;若不存在,
请说明理由.
如图,已知AB⊥平面ACD,DE⊥平面ACD,三角形ACD是正三角形,且AD=DE=2AB,F是CD的中点.
(Ⅰ)求证:平面CBE⊥平面CDE;
(Ⅱ)求二面角C—BE—F的余弦值.
如图所示,在直三棱柱ABC-A1B1C1中, BC="AC" ,AC1⊥A1B,M,N分别是A1B1,AB的中点,给出下列结论:①C1M⊥平面A1ABB1,②A1B⊥NB1 ,③平面AMC1⊥平面CBA1 ,其中正确结论的个数为 ( )
A.0 | B.1 | C.2 | D.3 |
(本小题满分12分)如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,PA=AD=1,AB=,点E为PD的中点,点F在棱DC上移动。
(1)当点F为DC的中点时,试判断EF与平面PAC的位置关系,并说明理由;
(2)求证:无论点F在DC的何处,都有PF⊥ AE
(3)求二面角E-AC-D的余弦值。
(本小题满分12分)如图四边形ABCD为菱形,G为AC与BD交点,,
(1)证明:平面平面;
(2)若,,令AE与平面ABCD所成角为,且,求该四棱锥的体积.
已知的三边长分别为,,,是边上的点,是平面外一点.给出下列四个命题:
①若平面,且是边中点,则有;
②若,平面,则面积的最小值为;
③若,平面,则三棱锥的外接球体积为;
④若,在平面上的射影是内切圆的圆心,则三棱锥的体积为;
其中正确命题的序号是 (把你认为正确命题的序号都填上).
如图,在三棱锥中,平面平面,为等边三角形,且,,分别为,的中点.
(Ⅰ)求证:平面;
(Ⅱ)求证:平面平面;
(Ⅲ)求二面角的平面角的余弦值..
如图,已知四棱锥P-ABCD的底面是直角梯形,∠ABC=∠BCD=90°,AB=BC=PB=PC=2CD=2,侧面PBC⊥底面ABCD,点M在AB上,且,E为PB的中点.
(1)求证:CE∥平面ADP;
(2)求证:平面PAD⊥平面PAB;
(3)棱AP上是否存在一点N,使得平面DMN⊥平面ABCD,若存在,求出的值;若不存在,请说明理由.
如图,在四棱锥中,底面ABCD为菱形,,Q为AD的中点,.
(1)求证:平面PQB;
(2)点M在线段PC上,,试确定t的值,使平面MQB.
如图,在长方体ABCD-A1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上移动.
(1)证明:D1E⊥A1D;
(2)当E为AB的中点时,求点E到面ACD1的距离;
(3)AE等于何值时,二面角D1-EC-D的大小为.
如图,三棱柱中,平面ABC,ABBC , 点M , N分别为A1C1与A1B的中点.
(Ⅰ)求证:MN平面BCC1B1;
(Ⅱ)求证:平面A1BC平面A1ABB1.