如图,已知AB⊥平面ACD,DE⊥平面ACD,三角形ACD是正三角形,且AD=DE=2AB,F是CD的中点.(Ⅰ)求证:平面CBE⊥平面CDE;(Ⅱ)求二面角C—BE—F的余弦值.
(本小题满分12分)已知点到直线l:的距离为.数列{an}的首项,且点列均在直线l上.(Ⅰ)求b的值;(Ⅱ)求数列{an}的通项公式;(Ⅲ)求数列的前n项和.
(本小题满分12分) 某投资公司计划投资A,B两种金融产品,根据市场调查与预测,A产品的利润y1与投资金额x的函数关系为y1=18-,B产品的利润y2与投资金额x的函数关系为y2=,(注:利润与投资金额单位:万元)(1)该公司已有100万元资金,并全部投入A,B两种产品中,其中x万元资金投入A产品,试把A,B两种产品利润总和表示为x的函数,并写出定义域;(2)在(1)的条件下,怎样分配这100万元资金,才能使公司获得最大利润?其最大利润为多少万元?
(本小题满分12分) 在△ABC中,角的对边分别是,若a+b=10,而cosC的值是方程2x2-3x-2=0的一个根,求三角形周长的最小值.
(本小题满分10分)(Ⅰ)求以下不等式的解集:(1) (2)(Ⅱ)若关于x的不等式的解集为,求实数m的值.
(满分14分) 已知:定义在R上的函数,对于任意实数a, b都满足,且,当.(Ⅰ)求的值;(Ⅱ)证明在上是增函数;(Ⅲ)求不等式的解集.