如图,在三棱锥中,平面,,,、、分别为、、的中点,、分别为线段、上的动点,且有.
(1)求证:面;
(2)探究:是否存在这样的动点M,使得二面角为直二面角?若存在,求CM的长度;若不存在,说明理由.
(本小题满分12分)如图四边形ABCD为菱形,G为AC与BD交点,,
(1)证明:平面平面;
(2)若,,令AE与平面ABCD所成角为,且,求该四棱锥的体积.
(本小题满分14分)如图1,在边长为的正方形中,,且,且,分别交于点,将该正方形沿折叠,使得与重合,构成图所示的三棱柱,在图中.
(Ⅰ)求证:;
(Ⅱ)求直线与平面所成角的正弦值;
(Ⅲ)在底边上有一点,使得平面,求的值.
已知的三边长分别为,,,是边上的点,是平面外一点.给出下列四个命题:
①若平面,且是边中点,则有;
②若,平面,则面积的最小值为;
③若,平面,则三棱锥的外接球体积为;
④若,在平面上的射影是内切圆的圆心,则三棱锥的体积为;
其中正确命题的序号是 (把你认为正确命题的序号都填上).
(本小题满分13分)如图,在四棱锥中,底面是等腰梯形, ∥,,,为的中点.
(Ⅰ)求证:∥平面;
(Ⅱ)若
(ⅰ)求证平面平面;
(ⅱ)求直线与底面成角的正弦值.
如图,在四棱锥中,底面是边长为的正方形,侧面底面,且,、分别为、的中点.
(Ⅰ)求证://平面;
(Ⅱ)求证:平面平面;
(Ⅲ)在线段上是否存在点使得二面角的余弦值为?若存在,求的长度;若不存在,说明理由.
如图,在三棱锥中,平面平面,为等边三角形,且,,分别为,的中点.
(Ⅰ)求证:平面;
(Ⅱ)求证:平面平面;
(Ⅲ)求二面角的平面角的余弦值..
如图,在三棱锥底面ABC,且SB=分别是SA、SC的中点.
(Ⅰ)求证:平面平面BCD;
(Ⅱ)求二面角的平面角的大小.
如图,在四棱锥中,底面ABCD为菱形,,Q为AD的中点,.
(1)求证:平面PQB;
(2)点M在线段PC上,,试确定t的值,使平面MQB.
如图,在长方体ABCD-A1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上移动.
(1)证明:D1E⊥A1D;
(2)当E为AB的中点时,求点E到面ACD1的距离;
(3)AE等于何值时,二面角D1-EC-D的大小为.
如图,三棱柱中,平面ABC,ABBC , 点M , N分别为A1C1与A1B的中点.
(Ⅰ)求证:MN平面BCC1B1;
(Ⅱ)求证:平面A1BC平面A1ABB1.
棱柱的所有棱长都为2,,平面⊥平面,.
(1)证明:;
(2)求锐二面角的平面角的余弦值;
(3)在直线上是否存在点,使得∥平面,若存在求出的位置.