已知数列
,
的通项
,
满足关系
,且数列
的前
项和
.
(Ⅰ)求数列
的通项公式;
(Ⅱ)求数列
的前
项和
.
如果项数均为
的两个数列
满足
且集合
,则称数列
是一对“
项相关数列”.
(Ⅰ)设
是一对“4项相关数列”,求
和
的值,并写出一对“
项相
关数列”
;
(Ⅱ)是否存在“
项相关数列”
?若存在,试写出一对
;若不存在,请说明理由;
(Ⅲ)对于确定的
,若存在“
项相关数列”,试证明符合条件的“
项相关数列”有偶数对.
数列
的前n项和记为Sn,a1=t,点(Sn,an+1)在直线y=2x+1上,n∈N*.
(1)当实数
为何值时,数列
是等比数列?
(2)在(1)的结论下,设
是数列
的前
项和,求
的值.
设数列
的各项均为正实数,
,若数列
满足
,
,其中
为正常数,且
.
(1)求数列
的通项公式;
(2)是否存在正整数
,使得当
时,
恒成立?若存在,求出使结论成立的
的取值范围和相应的
的最小值;若不存在,请说明理由;
(3)若
,设数列
对任意的
,都有
成立,问数列
是不是等比数列?若是,请求出其通项公式;若不是,请说明理由.
已知数列
满足
(
为常数),
成等差数列.
(Ⅰ)求p的值及数列
的通项公式;
(Ⅱ)设数列
满足
,证明:
.
在等差数列
中,
,
,记数列
的前
项和为
.
(1)求数列
的通项公式;
(2)是否存在正整数
、
,且
,使得
、
、
成等比数列?若存在,求出所有符合条件的
、
的值;若不存在,请说明理由.
设
,
,Q=
;若将
,lgQ,lgP适当排序后可构成公差为1的等差数列
的前三项.
(1)试比较M、P、Q的大小;
(2)求
的值及
的通项;
(3)记函数
的图象在
轴上截得的线段长为
,
设
,求
,并证明
.
已知数列
是首项为1,公差为
的等差数列,数列
是首项为1,公比为
的等比
数列.
(1)若
,
,求数列
的前
项和;
(2)若存在正整数
,使得
.试比较
与
的大小,并说明理由.
(本小题满分14分)已知数列{an}是以d为公差的等差数列,数列{bn}是以q为公比的等比数列
(Ⅰ)若数列{bn}的前n项和为Sn,且a1=b1=d=2,S3<5b2+a88-180,求整数q的值
(Ⅱ)在(Ⅰ)的条件下,试问数列{bn}中是否存在一项bk,使得b,k恰好可以表示为该数列中连续P(P∈N,P≥2)项和?请说明理由。
(Ⅲ)若b1=ar,b2=as≠ar, b3=at(其中t>s>r,且(s—r)是(t—r)的约数)求证:数列{bn}中每一项都是数列{an}中的项.
定义数列
:
,且对任意正整数
,有
.
(1)求数列
的通项公式与前
项和
;
(2)问是否存在正整数
,使得
?若存在,则求出所有的正整数对
;若不存在,则加以证明.
(本小题满分16分)已知数列
,
满足
,其中
.(Ⅰ)若
,求数列
的通项公式;
(Ⅱ)若
,且
.
(ⅰ)记
,求证:数列
为等差数列;
(ⅱ)若数列
中任意一项的值均未在该数列中重复出现无数次. 求首项
应满足的条件.