已知数列中,, 为实常数),前项和恒为正值,且当时,.⑴求证:数列是等比数列;⑵设与的等差中项为,比较与的大小;⑶设是给定的正整数,.现按如下方法构造项数为有穷数列:当时,;当时,.求数列的前项和.
(本小题满分12分) 已知F1、F2分别是双曲线x2-y2=1的两个焦点,O为坐标原点,圆O是以F1F2为直径的圆,直线l:y=kx+b (b>0)与圆O相切,并与双曲线相交于A、B两点. (1)根据条件求出b和k满足的关系式; (2)向量在向量方向的投影是p,当(×)p2=1时,求直线l的方程; (3)当(×)p2=m且满足2≤m≤4时,求DAOB面积的取值范围.
(本小题满分12分) 已知双曲线的离心率为,右准线方程为 (1)求双曲线的方程; (2)设直线是圆上动点处的切线,与双曲线交于不同的两点,证明的大小为定值.
(本小题满分13分) 已知函数,存在实数满足下列条件: ①;②;③ (1)证明:; (2)求b的取值范围.
(本小题满分13分) 已知圆满足: ①截y轴所得弦长为2; ②被x轴分成两段圆弧,其弧长的比为3:1; ③圆心到直线l:x-2y=0的距离为,求该圆的方程.
(本小题满分13分) 已知且,求: (1)的最小值; (2)若直线与轴、轴分别交于、,求(O为坐标原点)面积的最小值.