(本小题满分14分)已知数列{an}是以d为公差的等差数列,数列{bn}是以q为公比的等比数列(Ⅰ)若数列{bn}的前n项和为Sn,且a1=b1=d=2,S3<5b2+a88-180,求整数q的值(Ⅱ)在(Ⅰ)的条件下,试问数列{bn}中是否存在一项bk,使得b,k恰好可以表示为该数列中连续P(P∈N,P≥2)项和?请说明理由。(Ⅲ)若b1=ar,b2=as≠ar, b3=at(其中t>s>r,且(s—r)是(t—r)的约数)求证:数列{bn}中每一项都是数列{an}中的项.
已知函数f(x)=(2cos2x-1)sin 2x+cos 4x. (1)求f(x)的最小正周期及最大值; (2)若α∈,且f(α)=,求α的值.
已知函数f(x)=x3+x2-ax-a,x∈R,其中a>0. (1)求函数f(x)的单调区间; (2)若函数f(x)在区间(-2,0)内恰有两个零点,求a的取值范围.
设函数f(x)=x+ax2+bln x,曲线y=f(x)在点P(1,0)处的切线斜率为2. (1)求a,b的值; (2)证明:f(x)≤2x-2.
已知函数f(x)=ex(ax+b)-x2-4x,曲线y=f(x)在点(0,f(0))处的切线方程为y=4x+4. (1)求a,b的值; (2)讨论f(x)的单调性,并求f(x)的极大值.
某商场销售某种商品的经验表明,该商品每日的销售量y(单位:千克)与销售价格x(单位:元/千克)满足关系式y=+10(x-6)2,其中3<x<6,a为常数.已知销售价格为5元/千克时,每日可售出该商品11千克. (1)求a的值; (2)若该商品的成本为3元/千克,试确定销售价格x的值,使商场每日销售该商品所获得的利润最大.