已知函数在上是增函数,在上为减函数.(1)求的表达式;(2)若当时,不等式恒成立,求实数的值;(3)是否存在实数使得关于的方程在区间[0,2]上恰好有两个相异的实根,若存在,求实数的取值范围.
已知数列的前和为,且满足。(1)问:数列是否为等差数列?并证明你的结论;(2)求;(3)求证:。
已知椭圆的中心是坐标原点,它的短轴长为,一个焦点为,一个定点为,且,过点的直线与椭圆相交于两点。(1)求椭圆的方程和离心率;(2)若以为直径的圆恰好过坐标原点,求直线的方程。
顶点在原点,焦点在轴上的抛物线截直线所得的弦长|AB|=,求此抛物线的方程。
自发出的光线射到轴上,被轴反射,其反射光线所在直线与圆相切,求光线所在直线方程。
已知,且 的取值范围。