在数列
中,
,且对任意的
,
成等比数列,其公比为
.
(1)若
=2(
),求
;
(2)若对任意的
,
,
,
成等差数列,其公差为
,设
.
① 求证:
成等差数列,并指出其公差;
② 若
=2,试求数列
的前
项的和
.
已知等差数列{an}的前n项和为Sn,且满足a2=4,a3+a4=17.
(1)求{an}的通项公式;
(2)设bn=2an+2,证明数列{bn}是等比数列并求其前n项和Tn.
数列
为公差不为
的等差数列,
为前
项和,
和
的等差中项为
,且
.令
数列
的前
项和为
.
(Ⅰ)求
及
;
(Ⅱ)是否存在正整数
成等比数列?若存在,求出所有的
的值;若不存在,请说明理由.
在数列{an}中,a1=1,an+1=2an+2n.
(1)设bn=
,证明:数列{bn}是等差数列;
(2)求数列{an}的前n项和Sn,
(3)设cn=
,求数列{cn}的最大项.
已知两个动点
、
和一个定点
均在抛物线
上(
、
与
不重合). 设
为抛物线的焦点,
为其对称轴上一点,若
,且
、
、
成等差数列.
(Ⅰ)求
的坐标(可用
、
和
表示);
(Ⅱ)若
,
,
、
两点在抛物线
的准线上的射影分别为
、
,求四边形
面积的取值范围.
已知公差不为零的等差数列{an},若a1=1,且a1,a2,a5成等比数列.
(1)求数列{an}的通项公式;
(2)设bn=2n,求数列{an+bn}的前n项和Sn.