已知两个动点、和一个定点均在抛物线上(、与不重合). 设为抛物线的焦点,为其对称轴上一点,若,且、、成等差数列.(Ⅰ)求的坐标(可用、和表示);(Ⅱ)若,,、两点在抛物线的准线上的射影分别为、,求四边形面积的取值范围.
已知函数(是常数)在处的切线方程为,且.(Ⅰ)求常数的值;(Ⅱ)若函数()在区间内不是单调函数,求实数的取值范围;(Ⅲ)证明:.
已知数列的前项和为,,是与的等差中项().(Ⅰ)证明数列为等比数列;(Ⅱ)求数列的通项公式;(Ⅲ)是否存在正整数,使不等式()恒成立,若存在,求出的最大值;若不存在,请说明理由.
已知函数,.(Ⅰ)当,时,求的单调区间;(2)当,且时,求在区间上的最大值.
设数列满足:,,.(Ⅰ)求的通项公式及前项和;(Ⅱ)已知是等差数列,为前项和,且,.求的通项公式,并证明:.
已知向量,,设函数,.(Ⅰ)求的最小正周期与最大值;(Ⅱ)在中, 分别是角的对边,若的面积为,求的值.