已知数列的前n项和和通项满足,等差数列中,.(1)求数列,的通项公式;(2)数列满足,求证:.
已知动圆过定点,且与定直线相切. (1)求动圆圆心的轨迹C的方程; (2)若、是轨迹C上的两不同动点,且. 分别以、为切点作轨迹C的切线,设其交点Q,证明为定值.
数列中,,(是不为零的常数,),且成等比数列. (1)求的值; (2)求的通项公式; (3)求数列的前项之和
已知:函数 ⑴求的最小正周期; ⑵求的单递增区间; ⑶求图象的对称轴、对称中心。
如图,在四棱锥P—ABCD中,底面ABCD为矩形,侧棱PA⊥底面ABCD,AB=,BC=1,PA=2,E为PD的中点. (1)求直线AC与PB所成角的余弦值; (2)在侧面PAB内找一点N,使NE⊥面PAC,并求出N点到AB和AP的距离.
已知向量,若正数k和t使得向量垂直,求k的最小值.