(文科)已知点是椭圆的左顶点,直线与椭圆相交于两点,与轴相交于点.且当时,△的面积为.(Ⅰ)求椭圆的方程;(Ⅱ)设直线,与直线分别交于,两点,试判断以为直径的圆是否经过点?并请说明理由.
已知函数,,.(Ⅰ)当,求使恒成立的的取值范围;(Ⅱ)设方程的两根为(),且函数在区间上的最大值与最小值之差是8,求的值.
数列满足.(Ⅰ)若是等差数列,求其通项公式;(Ⅱ)若满足,为的前项和,求
已知三棱柱,底面为正三角形,平面,,为中点.(Ⅰ)求证:平面;(Ⅱ)求直线与平面所成角的正弦值.
在中,角所对的边分别为,且成等差数列.(Ⅰ)求角的大小; (Ⅱ)若,求边上中线长的最小值.
)设,函数.(Ⅰ)若,试求函数的导函数的极小值;(Ⅱ)若对任意的,存在,使得当时,都有,求实数的取值范围.