由函数
确定数列
,
.若函数
能确定数列
,
,则称数列
是数列
的“反数列”.
(1)若函数
确定数列
的反数列为
,求
;
(2)对(1)中的
,不等式
对任意的正整数
恒成立,求实数
的取值范围;
(3)设
(
为正整数),若数列
的反数列为
,
与
的公共项组成的数列为
(公共项
为正整数),求数列
的前
项和
.
数列
中,已知
,
时,
.数列
满足:
.
(1)证明:
为等差数列,并求
的通项公式;
(2)记数列
的前
项和为
,若不等式
成立(
为正整数).求出所有符合条件的有序实数对
.
设
是公差大于零的等差数列,已知
,
.
(Ⅰ)求
的通项公式;
(Ⅱ)设
是以函数
的最小正周期为首项,以
为公比的等比数列,求数列
的前
项和
.
已知数列
具有性质:①
为正数;②对于任意的正整数
,当
为偶数时,
;当
为奇数时,
(1)若
,求数列
的通项公式;
(2)若
成等差数列,求
的值;
(3)设
,数列
的前
项和为
,求证:
已知数列
中,
,
,
.
(1)证明:数列
是等比数列,并求数列
的通项公式;
(2)在数列
中,是否存在连续三项成等差数列?若存在,求出所有符合条件的项;若不存在,请说明理由;
(3)若
且
,
,求证:使得
,
,
成等差数列的点列
在某一直线上.
已知数列
是首项为1,公差为2的等差数列,数列
的前n项和
.
(I)求数列
的通项公式;
(II)设
, 求数列
的前n项和
.
已知等差数列
满足:
,该数列的前三项分别加上l,l,3后顺次成为等比数列
的前三项.
(I)求数列
,
的通项公式;
(II)设
,若
恒成立,求c的最小值.
等差数列
中,
,公差
,且它的第2项,第5项,第14项分别是等比数列
的第2项,第3项,第4项.
(Ⅰ)求数列
与
的通项公式;
(Ⅱ)设数列
对任意自然数均有
成立,求
的值.
设集合W是满足下列两个条件的无穷数列
的集合:①对任意
,
恒成立;②对任意
,存在与n无关的常数M,使
恒成立.
(1)若
是等差数列,
是其前n项和,且
试探究数列
与集合W之间的关系;
(2)设数列
的通项公式为
,且
,求M的取值范围.