已知等差数列满足:,该数列的前三项分别加上l,l,3后顺次成为等比数列的前三项.(I)求数列,的通项公式;(II)设,若恒成立,求c的最小值.
如图,三棱锥中,底面ABC于B,=900,,点E、F分别是PC、AP的中点。 (1)求证:侧面; (2)求异面直线AE与BF所成的角;
设F1、F2分别为椭圆C:=1(a>b>0)的左、右两个焦 点。(1)若椭圆C上的点A(1,)到F1、F2两点的 距离之和等于4,写出椭圆C的方程和焦点坐标; (2)设点K是(1)中所得椭圆上的动点,求线段F1K的中点的轨迹方程.
已知,如图,AB是⊙O的直径,G为AB延长线上的一点,GCD是⊙O的割线,过点G作AB的垂线,交直线AC于点E,交AD于点F,过G作⊙O的切线,切点为H.求证: (1)C,D,F,E四点共圆; (2)GH2=GE·GF.
设不等式|2x-1|<1的解集为M. (1)求集合M; (2)若a,b∈M,试比较ab+1与a+b的大小.
一次数学模拟考试,共12道选择题,每题5分,共计60分.小张所在班级共有40人,此次考试选择题得分情况统计表:
现采用分层抽样的方法从此班抽取20人的试卷进行选择题质量分析. (1)应抽取多少张选择题得60分的试卷? (2)若小张选择题得60分,求他的试卷被抽到的概率.