C.(选做题选修 )在平面之间坐标系 中,已知直线 的参数方程式为 ,
椭圆 的参数方程为 为参数).设直线 与椭圆 相交于 , 两点, 求线段 的长.
记 . 对数列 和 的子集 , 若 , 定义 若
, 定 义 . 例 如 : 时 ,
现设 是公比为 3 的等比数列, 且当 时,
(1) 求数列 的通项公式;
(2) 对任意正整数 , 若 , 求证: ;
(3) 设 , 求证: .
已知函数 =│ x+1│-│ x-2│.
(1)求不等式 ≥1的解集;
(2)若不等式 ≥ x 2- x+ m的解集非空,求实数 m的取值范围.
设 n为正整数,集合 A= .对于集合 A中的任意元素 和 ,记
M( )= .
(Ⅰ)当 n=3时,若 , ,求 M( )和 M( )的值;
(Ⅱ)当 n=4时,设 B是 A的子集,且满足:对于 B中的任意元素 ,当 相同时, M( )是奇数;当 不同时, M( )是偶数.求集合 B中元素个数的最大值;
(Ⅲ)给定不小于2的 n,设 B是 A的子集,且满足:对于 B中的任意两个不同的元素 , M( )=0.写出一个集合 B,使其元素个数最多,并说明理由.
已知函数 , ,其中 a>1.
(I)求函数 的单调区间;
(II)若曲线 在点 处的切线与曲线 在点 处的切线平行,证明 ;
(III)证明当 时,存在直线 l,使 l是曲线 的切线,也是曲线 的切线.
已知 .
(1)当 时,求不等式 的解集;
(2)若 时不等式 成立,求 的取值范围.
设函数 .
(1)当 时,求不等式 的解集;
(2)若 恒成立,求 的取值范围.
已知函数 .
(1)若 ,证明:当 时, ;当 时, ;
(2)若 是 的极大值点,求 .
已知斜率为 的直线 与椭圆 交于 , 两点,线段 的中点为 .
(1)证明: ;
(2)设 为 的右焦点, 为 上一点,且 .证明: , , 成等差数列,并求该数列的公差.
设 是同一个半径为4的球的球面上四点, 为等边三角形且其面积为 ,则三棱锥 体积的最大值为( )
A. |
|
B. |
|
C. |
|
D. |
|
已知函数 .
(Ⅰ)若f(x)在x=x 1,x 2(x 1≠x 2)处导数相等,证明:f(x 1)+f(x 2)>8−8ln2;
(Ⅱ)若a≤3−4ln2,证明:对于任意k>0,直线y=kx+a与曲线y=f(x)有唯一公共点.
已知 .
(1)当 时,求不等式 的解集;
(2)若 时不等式 成立,求 的取值范围.