已知 是等腰直角三角形, , , , ,连接 ,点 是 的中点.
(1)如图1,若点 在 边上,连接 ,当 时,求 的长;
(2)如图2,若点 在 的内部,连接 ,点 是 中点,连接 , ,求证: ;
(3)如图3,将图2中的 绕点 逆时针旋转,使 ,连接 ,点 是 中点,连接 ,探索 的值并直接写出结果.
在 中, , ,点 是 上一点,连接 ,过点 作 ,在 上取点 ,连接 .延长 至 ,使 ,连接 , ,且 .
(1)若 ,求 的长;
(2)如图1,当点 在 上时,求证: ;
(3)如图2,当点 在 的垂直平分线上时,直接写出 的值.
(1)问题发现
如图1,在和中,,,,连接,交于点.填空:
①的值为 ;
②的度数为 .
(2)类比探究
如图2,在和中,,,连接交的延长线于点.请判断的值及的度数,并说明理由;
(3)拓展延伸
在(2)的条件下,将绕点在平面内旋转,,所在直线交于点,若,,请直接写出当点与点重合时的长.
如图,,点在边上,,点为边上一动点,连接,△与关于所在直线对称,点,分别为,的中点,连接并延长交所在直线于点,连接.当△为直角三角形时,的长为 .
探究
(1)如图①,在等腰直角三角形中,,作平分交于点,点为射线上一点,以点为旋转中心将线段逆时针旋转得到线段,连接交射线于点,连接、
填空:
①线段、的数量关系为 .
②线段、的位置关系为 .
推广:
(2)如图②,在等腰三角形中,顶角,作平分交于点,点为外部射线上一点,以点为旋转中心将线段逆时针旋转度得到线段,连接、、请判断(1)中的结论是否成立,并说明理由.
应用:
(3)如图③,在等边三角形中,.作平分交于点,点为射线上一点,以点为旋转中心将线段逆时针旋转得到线段,连接交射线于点,连接、.当以、、为顶点的三角形与全等时,请直接写出的值.
如图1,在中,,,点,分别在边,上,,连接,点,,分别为,,的中点.
(1)观察猜想:图1中,线段与的数量关系是 ,位置关系是 ;
(2)探究证明:把绕点逆时针方向旋转到图2的位置,连接,,,判断的形状,并说明理由;
(3)拓展延伸:把绕点在平面内自由旋转,若,,请直接写出面积的最大值.
如图,在等边三角形中,,点,分别是边,的中点,点,同时沿射线的方向以相同的速度运动,某一时刻分别运动到点,处,连接,,,.
(1)写出图1中的一对全等三角形;
(2)如图2所示,当点在线段延长线上时,画出示意图,判断(1)中所写的一对三角形是否仍然全等,并说明理由;
(3)在点运动的过程中,若是直角三角形,直接写出此时线段的长度.
(1)发现:如图1,点 为线段 外一动点,且 , .
填空:当点 位于 时,线段 的长取得最大值,且最大值为 (用含 , 的式子表示)
(2)应用:点 为线段 外一动点,且 , ,如图2所示,分别以 , 为边,作等边三角形 和等边三角形 ,连接 , .
①请找出图中与 相等的线段,并说明理由;
②直接写出线段 长的最大值.
(3)拓展:如图3,在平面直角坐标系中,点 的坐标为 ,点 的坐标为 ,点 为线段 外一动点,且 , , ,请直接写出线段 长的最大值及此时点 的坐标.
(1)探索发现
如图1,在中,点在边上,与的面积分别记为与,试判断与的数量关系,并说明理由.
(2)阅读解析
小东遇到这样一个问题:如图2,在中,,,射线交于点,点、在上,且,试判断、、三条线段之间的数量关系.
小东利用一对全等三角形,经过推理使问题得以解决.
填空:①图2中的一对全等三角形为 ;
②、、三条线段之间的数量关系为 .
(3)类比探究
如图3,在四边形中,,与交于点,点、在射线上,且.
①判断、、三条线段之间的数量关系,并说明理由;
②若,的面积为2,直接写出四边形的面积.
如图,在中,,,,动点从点出发,沿以每秒2个单位长度的速度向终点运动.过点作于点(点不与点、重合),作,边交射线于点.设点的运动时间为秒.
(1)用含的代数式表示线段的长;
(2)当点与点重合时,求的值;
(3)设与重叠部分图形的面积为,求与之间的函数关系式;
(4)当线段的垂直平分线经过一边中点时,直接写出的值.
如图,在等腰直角三角形中,,,于点,点从点出发,沿方向以的速度运动到点停止,在运动过程中,过点作交于点,以线段为边作等腰直角三角形,且(点,位于异侧).设点的运动时间为,与重叠部分的面积为
(1)当点落在上时, ;
(2)当点落在上时, ;
(3)求关于的函数解析式,并写出自变量的取值范围.
如图1和图2,在中,,,.点在边上,点,分别在,上,且.点从点出发沿折线匀速移动,到达点时停止;而点在边上随移动,且始终保持.
(1)当点在上时,求点与点的最短距离;
(2)若点在上,且将的面积分成上下两部分时,求的长;
(3)设点移动的路程为,当及时,分别求点到直线的距离(用含的式子表示);
(4)在点处设计并安装一扫描器,按定角扫描区域(含边界),扫描器随点从到再到共用时36秒.若,请直接写出点被扫描到的总时长.
如图,和中,,,,边与边交于点(不与点,重合),点,在异侧,为的内心.
(1)求证:;
(2)设,请用含的式子表示,并求的最大值;
(3)当时,的取值范围为,分别直接写出,的值.
如图,,为中点,点为射线上(不与点重合)的任意一点,连接,并使的延长线交射线于点,设.
(1)求证:;
(2)当时,求的度数;
(3)若的外心在该三角形的内部,直接写出的取值范围.