初中数学

如图,在 ΔABC 中, BC > AC ,点 E BC 上, CE = CA ,点 D AB 上,连接 DE ACB + ADE = 180 ° ,作 CH AB ,垂足为 H

(1)如图 a ,当 ACB = 90 ° 时,连接 CD ,过点 C CF CD BA 的延长线于点 F

①求证: FA = DE

②请猜想三条线段 DE AD CH 之间的数量关系,直接写出结论;

(2)如图 b ,当 ACB = 120 ° 时,三条线段 DE AD CH 之间存在怎样的数量关系?请证明你的结论.

来源:2016年辽宁省抚顺市中考数学试卷
  • 更新:2021-05-15
  • 题型:未知
  • 难度:未知

(1)已知: ΔABC 是等腰三角形,其底边是 BC ,点 D 在线段 AB 上, E 是直线 BC 上一点,且 DEC = DCE ,若 A = 60 ° (如图①).求证: EB = AD

(2)若将(1)中的“点 D 在线段 AB 上”改为“点 D 在线段 AB 的延长线上”,其它条件不变(如图②),(1)的结论是否成立,并说明理由;

(3)若将(1)中的“若 A = 60 ° ”改为“若 A = 90 ° ”,其它条件不变,则 EB AD 的值是多少?(直接写出结论,不要求写解答过程)

来源:2016年山东省泰安市中考数学试卷
  • 更新:2021-05-14
  • 题型:未知
  • 难度:未知

ΔABC 中, AB = AC ABC = α ,过点 A 作直线 MN ,使 MN / / BC ,点 D 在直线 MN 上,作射线 BD ,将射线 BD 绕点 B 顺时针旋转角 α 后交直线 AC 于点 E

(1)如图①,当 α = 60 ° ,且点 D 在射线 AN 上时,直接写出线段 AB AD AE 的数量关系.

(2)如图②,当 α = 45 ° ,且点 D 在射线 AN 上时,直写出线段 AB AD AE 的数量关系,并说明理由.

(3)当 α = 30 ° 时,若点 D 在射线 AM 上, ABE = 15 ° AD = 3 1 ,请直接写出线段 AE 的长度.

来源:2017年辽宁省本溪市中考数学试卷
  • 更新:2021-05-13
  • 题型:未知
  • 难度:未知

如图, ΔABC 中, AB = AC DE 垂直平分 AB ,交线段 BC 于点 E (点 E 与点 C 不重合),点 F AC 上一点,点 G AB 上一点(点 G 与点 A 不重合),且 GEF + BAC = 180 °

(1)如图1,当 B = 45 ° 时,线段 AG CF 的数量关系是  

(2)如图2,当 B = 30 ° 时,猜想线段 AG CF 的数量关系,并加以证明.

(3)若 AB = 6 DG = 1 cos B = 3 4 ,请直接写出 CF 的长.

来源:2019年辽宁省铁岭市中考数学试卷
  • 更新:2021-05-13
  • 题型:未知
  • 难度:未知

我们规定:三角形任意两边的“极化值”等于第三边上的中线和这边一半的平方差.如图1,在 ΔABC 中, AO BC 边上的中线, AB AC 的“极化值”就等于 A O 2 - B O 2 的值,可记为 AB AC = A O 2 - B O 2

(1)在图1中,若 BAC = 90 ° AB = 8 AC = 6 AO BC 边上的中线,则 AB AC =          OC OA =        

(2)如图2,在 ΔABC 中, AB = AC = 4 BAC = 120 ° ,求 AB AC BA BC 的值;

(3)如图3,在 ΔABC 中, AB = AC AO BC 边上的中线,点 N AO 上,且 ON = 1 3 AO .已知 AB AC = 14 BN BA = 10 ,求 ΔABC 的面积.

来源:2017年江苏省扬州市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

如图,在四边形 ABCD 中, ABC = 90 ° AB = BC = 2 2 E F 分别是 AD CD 的中点,连接 BE BF EF .若四边形 ABCD 的面积为6,则 ΔBEF 的面积为 (    )

A.2B. 9 4 C. 5 2 D.3

来源:2016年江苏省苏州市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

已知,在 Rt Δ ABC 中, ACB = 90 ° D BC 边上一点,连接 AD ,分别以 CD AD 为直角边作 Rt Δ CDE Rt Δ ADF ,使 DCE = ADF = 90 ° ,点 E F BC 下方,连接 EF

(1)如图1,当 BC = AC CE = CD DF = AD 时,

求证:① CAD = CDF ,② BD = EF

(2)如图2,当 BC = 2 AC CE = 2 CD DF = 2 AD 时,猜想 BD EF 之间的数量关系?并说明理由.

来源:2019年辽宁省锦州市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

如图, ΔABC 是等腰直角三角形, ACB = 90 ° D 是射线 CB 上一点(点 D 不与点 B 重合),以 AD 为斜边作等腰直角三角形 ADE (点 E 和点 C AB 的同侧),连接 CE

(1)如图①,当点 D 与点 C 重合时,直接写出 CE AB 的位置关系;

(2)如图②,当点 D 与点 C 不重合时,(1)的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由;

(3)当 EAC = 15 ° 时,请直接写出 CE AB 的值.

来源:2019年辽宁省葫芦岛市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

如图,是具有公共边 AB 的两个直角三角形,其中, AC = BC ACB = ADB = 90 °

(1)如图1,若延长 DA 到点 E ,使 AE = BD ,连接 CD CE

①求证: CD = CE CD CE

②求证: AD + BD = 2 CD

(2)若 ΔABC ΔABD 位置如图2所示,请直接写出线段 AD BD CD 的数量关系.

来源:2019年辽宁省阜新市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

已知:在 ΔABC 外分别以 AB AC 为边作 ΔAEB ΔAFC

(1)如图1, ΔAEB ΔAFC 分别是以 AB AC 为斜边的等腰直角三角形,连接 EF .以 EF 为直角边构造 Rt Δ EFG ,且 EF = FG ,连接 BG CG EC

求证:① ΔAEF ΔCGF

②四边形 BGCE 是平行四边形.

(2)小明受到图1的启发做了进一步探究:

如图2,在 ΔABC 外分别以 AB AC 为斜边作 Rt Δ AEB Rt Δ AFC ,并使 FAC = EAB = 30 ° ,取 BC 的中点 D ,连接 DE EF 后发现,两者间存在一定的数量关系且夹角度数一定,请你帮助小明求出 ED EF 的值及 DEF 的度数.

(3)小颖受到启发也做了探究:

如图3,在 ΔABC 外分别以 AB AC 为底边作等腰三角形 AEB 和等腰三角形 AFC ,并使 CAF + EAB = 90 ° ,取 BC 的中点 D ,连接 DE EF 后发现,当给定 EAB = α 时,两者间也存在一定的数量关系且夹角度数一定,若 AE = m AB = n ,请你帮助小颖用含 m n 的代数式直接写出 ED EF 的值,并用含 α 的代数式直接表示 DEF 的度数.

来源:2019年辽宁省丹东市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

已知:在 ΔABC 中, ACB = 90 ° ,点 D AC 边上一点,连接 BD ,点 E 是线段 BD 延长线上一点,连接 AE CE ,使 CAE = CBE ,过点 C CF CE ,交 BD 于点 F

(1)①如图1,当 ABC = 45 ° 时,线段 AE BF 之间的数量关系是 

②如图2,当 ABC = 60 ° 时,线段 AE BF 之间的数量关系是  

(2)如图3,当 ABC = 30 ° 时,线段 AE BF 之间具有怎样的数量关系?请说明理由.

(3)如图4,当 ABC = α ( 0 ° < α < 90 ° ) 时,直接写出线段 AE BF 之间的数量关系.(用含 α 的式子表示)

来源:2018年辽宁省营口市中考数学试卷
  • 更新:2021-05-10
  • 题型:未知
  • 难度:未知

已知: ΔABC 是等腰三角形, CA = CB 0 ° < ACB 90 ° .点 M 在边 AC 上,点 N 在边 BC 上(点 M 、点 N 不与所在线段端点重合), BN = AM ,连接 AN BM ,射线 AG / / BC ,延长 BM 交射线 AG 于点 D ,点 E 在直线 AN 上,且 AE = DE

(1)如图,当 ACB = 90 °

①求证: ΔBCM ΔACN

②求 BDE 的度数;

(2)当 ACB = α ,其它条件不变时, BDE 的度数是  ;(用含 α 的代数式表示)

(3)若 ΔABC 是等边三角形, AB = 3 3 ,点 N BC 边上的三等分点,直线 ED 与直线 BC 交于点 F ,请直接写出线段 CF 的长.

来源:2018年辽宁省沈阳市中考数学试卷
  • 更新:2021-05-10
  • 题型:未知
  • 难度:未知

ΔABC 中, AB = BC ,点 O AC 的中点,点 P AC 上的一个动点(点 P 不与点 A O C 重合).过点 A ,点 C 作直线 BP 的垂线,垂足分别为点 E 和点 F ,连接 OE OF

(1)如图1,请直接写出线段 OE OF 的数量关系;

(2)如图2,当 ABC = 90 ° 时,请判断线段 OE OF 之间的数量关系和位置关系,并说明理由

(3)若 | CF AE | = 2 EF = 2 3 ,当 ΔPOF 为等腰三角形时,请直接写出线段 OP 的长.

来源:2018年辽宁省葫芦岛市中考数学试卷
  • 更新:2021-05-10
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, BAC = 90 ° AB = AC AD BC 于点 D

(1)如图1,点 E F AB AC 上,且 EDF = 90 ° .求证: BE = AF

(2)点 M N 分别在直线 AD AC 上,且 BMN = 90 °

①如图2,当点 M AD 的延长线上时,求证: AB + AN = 2 AM

②当点 M 在点 A D 之间,且 AMN = 30 ° 时,已知 AB = 2 ,直接写出线段 AM 的长.

来源:2018年辽宁省阜新市中考数学试卷
  • 更新:2021-05-10
  • 题型:未知
  • 难度:未知

如图 ΔABC 为等边三角形,以 BC 为边在 ΔABC 外作正方形 BCDE ,延长 AB 分别交 CE DE 的延长线于点 F N CH AF 于点 H EM AF 于点 M ,连接 AE

(1)判断 ΔCHB ΔBME 是否全等,并说明理由;

(2)求证: A E 2 = AC · AF

(3)已知 AB = 2 ,若点 P 是直线 AF 上的动点,请直接写出 ΔCEP 周长的最小值.

来源:2018年辽宁省丹东市中考数学试卷
  • 更新:2021-05-10
  • 题型:未知
  • 难度:未知

初中数学三角形综合题试题