ΔABC 中, AB = AC , ∠ ABC = α ,过点 A 作直线 MN ,使 MN / / BC ,点 D 在直线 MN 上,作射线 BD ,将射线 BD 绕点 B 顺时针旋转角 α 后交直线 AC 于点 E .
(1)如图①,当 α = 60 ° ,且点 D 在射线 AN 上时,直接写出线段 AB , AD , AE 的数量关系.
(2)如图②,当 α = 45 ° ,且点 D 在射线 AN 上时,直写出线段 AB 、 AD 、 AE 的数量关系,并说明理由.
(3)当 α = 30 ° 时,若点 D 在射线 AM 上, ∠ ABE = 15 ° , AD = 3 − 1 ,请直接写出线段 AE 的长度.
已知二次函数当x=时,有最大值,且当x=0时,y=,求二次函数的解析式。
解方程 (1) (2)(x+3)(x-6)=
2015年9月19日第九届合肥文博会开幕.开幕前夕,我市某工艺厂设计了一款成本为10元/件的工艺品投放市场进行试销.经过调查,得到如下数据:
(1)把上表中x、y的各组对应值作为点的坐标,在下面的平面直角坐标系中描出相应的点,猜想y与x的函数关系,并求出函数关系式; (2)当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少? (3)开幕后,合肥市物价部门规定,该工艺品销售单价最高不能超过38元/件,那么销售单价定为多少时,工艺厂销售该工艺品每天获得的利润最大?最大利润是多少?
如图,小李在一次高尔夫球选拔赛中,从山坡下O点打出一球向球洞A点飞去,球的飞行路线为抛物线,如果不考虑空气阻力,当球达到最大水平高度12米时,球移动的水平距离为9米.已知山坡OA与水平方向OC的夹角为30o,O、A两点相距8米. (1)求直线OA的解析式; (2)求出球的飞行路线所在抛物线的解析式; (3)判断小李这一杆能否把高尔夫球从O点直接打入球洞A点.
如图,反比例函数与一次函数的图象交于两点A(1,3)、B(n,-1). (1)求这两个函数的解析式; (2)观察图象,请直接写出不等式的解集; (3)点C为x轴正半轴上一点,连接AO、AC,且AO=AC,求⊿AOC的面积.