如图, ΔABC 是等腰直角三角形, ∠ ACB = 90 ° , D 是射线 CB 上一点(点 D 不与点 B 重合),以 AD 为斜边作等腰直角三角形 ADE (点 E 和点 C 在 AB 的同侧),连接 CE .
(1)如图①,当点 D 与点 C 重合时,直接写出 CE 与 AB 的位置关系;
(2)如图②,当点 D 与点 C 不重合时,(1)的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由;
(3)当 ∠ EAC = 15 ° 时,请直接写出 CE AB 的值.
某市教育行政部门为了了解初一学生每学期参加综合实践活动的情况,随机抽样调查了某校初一学生一个学期参加综合实践活动的天数,并用得到的数据绘制了下面两幅不完整的统计图(如图). 请你根据图中提供的信息,回答下列问题: (1)求出扇形统计图中a的值,并求出该校初一学生总数; (2)分别求出活动时间为5天、7天的学生人数,并补全频数分布直方图; (3)求出扇形统计图中“活动时间为4天”的扇形所对圆心角的度数; (4)在这次抽样调查中,众数和中位数分别是多少? (5)如果该市共有初一学生6000人,请你估计“活动时间不少于4天”的大约有多少人?
如图,在△ABC中,∠C=90°,∠A=30°. (1)用尺规作图作AB边上的中垂线DE,交AC于点D,交AB于点E.(保留作图痕迹,不要求写作法和证明); (2)连结BD,求证:BD平分∠CBA.
求不等式组的正整数解.
二次函数图象的顶点在原点O,经过点A(1,);点F(0,1)在y轴上.直线y=-1与y轴交于点H. (1)求二次函数的解析式; (2)点P是(1)中图象上的点,过点P作x轴的垂线与直线y=-1交于点M,求证:FM平分∠OFP; (3)当△FPM是等边三角形时,求P点的坐标.
如图,在锐角三角形纸片ABC中,AC>BC,点D,E,F分别在边AB,BC,CA上. (1)已知:DE∥AC,DF∥BC. ①判断 四边形DECF一定是什么形状?并说明理由. ②裁剪 当AC=24cm,BC=20cm,∠ACB=45°时,请你探索:如何剪四边形DECF,能使它的面积最大,并证明你的结论; (2)折叠 请你只用两次折叠,确定四边形的顶点D,E,C,F,使它恰好为菱形,并说明你的折法和理由.