已知,在 Rt Δ ABC 中, ∠ ACB = 90 ° , D 是 BC 边上一点,连接 AD ,分别以 CD 和 AD 为直角边作 Rt Δ CDE 和 Rt Δ ADF ,使 ∠ DCE = ∠ ADF = 90 ° ,点 E , F 在 BC 下方,连接 EF .
(1)如图1,当 BC = AC , CE = CD , DF = AD 时,
求证:① ∠ CAD = ∠ CDF ,② BD = EF ;
(2)如图2,当 BC = 2 AC , CE = 2 CD , DF = 2 AD 时,猜想 BD 和 EF 之间的数量关系?并说明理由.
(本题8分)一只不透明的箱子里共有3个球,其中2个白球,1个红球,它们除颜色外均相同.(1)从箱子中随机摸出一个球是白球的概率是多少?(2)从箱子中随机摸出一个球,记录下颜色后不将它放回箱子,搅匀后再摸出一个球,求两次摸出的球都是白球的概率,并画出树状图.
如图(1),抛物线与x轴交于A、B两点,与y轴交于点C(0,).[图(2)为解答备用图](1)__________,点A的坐标为___________,点B的坐标为__________;(2)设抛物线的顶点为M,求四边形ABMC的面积;(3)在x轴下方的抛物线上是否存在一点D,使四边形ABDC的面积最大?若存在,请求出点D的坐标;若不存在,请说明理由.
如图,在单位长度为1的正方形网格中,一段圆弧经过网格的交点A、B、C.(1)请完成如下操作:①以点O为原点、竖直和水平方向所在的直线为坐标轴、网格边长为单位长,建立平面直角坐标系;②用直尺和圆规画出该圆弧所在圆的圆心D的位置(不用写作法,保留作图痕迹),并连结AD、CD.(此小问为了解问,可不做)(2)请在(1)的基础上,完成下列问题:①写出点的坐标:C 、D ;②⊙D的半径= (结果保留根号);③若E(7,0),试判断直线EC与⊙D的位置关系并说明你的理由.
某商场销售一批名牌衬衣,平均每天可售出20件,每件衬衣盈利40元.为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衣降价1元,商场平均每天可多售出2件.(1)若商场平均每天盈利1200元,每件衬衣应降价多少元?(2)若要使商场平均每天的盈利最多,请你为商场设计降价方案.
箱中装有3张相同的卡片,它们分别写有数字1,2,4;箱中也装有3张相同的卡片,它们分别写有数字2,4,5;现从箱、箱中各随机地取出1张卡片,请你用画树形(状)图或列表的方法求:(1)两张卡片上的数字恰好相同的概率.(2)如果取出箱中卡片上的数字作为十位上的数字,取出箱中卡片上的数字作为个位上的数字,求两张卡片组成的两位数能被3整除的概率.