初中数学

阅读下面材料:

小明遇到这样一个问题:

如图1, ΔABC 中, ACB = 90 ° ,点 D AB 上,且 BAC = 2 DCB ,求证: AC = AD

小明发现,除了直接用角度计算的方法外,还可以用下面两种方法:

方法1:如图2,作 AE 平分 CAB ,与 CD 相交于点 E

方法2:如图3,作 DCF = DCB ,与 AB 相交于点 F

(1)根据阅读材料,任选一种方法,证明 AC = AD

用学过的知识或参考小明的方法,解决下面的问题:

(2)如图4, ΔABC 中,点 D AB 上,点 E BC 上,且 BDE = 2 ABC ,点 F BD 上,且 AFE = BAC ,延长 DC FE ,相交于点 G ,且 DGF = BDE

①在图中找出与 DEF 相等的角,并加以证明;

②若 AB = kDF ,猜想线段 DE DB 的数量关系,并证明你的猜想.

来源:2018年辽宁省大连市中考数学试卷
  • 更新:2021-05-10
  • 题型:未知
  • 难度:未知

ΔABC 中, BC = a AC = b AB = c ,若 C = 90 ° ,如图1,则有 a 2 + b 2 = c 2 ;若 ΔABC 为锐角三角形时,小明猜想: a 2 + b 2 > c 2 ,理由如下:如图2,过点 A AD CB 于点 D ,设 CD = x .在 Rt Δ ADC 中, A D 2 = b 2 x 2 ,在 Rt Δ ADB 中, A D 2 = c 2 ( a x ) 2

a 2 + b 2 = c 2 + 2 ax

a > 0 x > 0

2 ax > 0

a 2 + b 2 > c 2

ΔABC 为锐角三角形时, a 2 + b 2 > c 2

所以小明的猜想是正确的.

(1)请你猜想,当 ΔABC 为钝角三角形时, a 2 + b 2 c 2 的大小关系.

(2)温馨提示:在图3中,作 BC 边上的高.

(3)证明你猜想的结论是否正确.

来源:2016年贵州省六盘水市中考数学试卷
  • 更新:2021-04-27
  • 题型:未知
  • 难度:未知

(1)阅读理解:

如图①,在 ΔABC 中,若 AB = 10 AC = 6 ,求 BC 边上的中线 AD 的取值范围.

解决此问题可以用如下方法:延长 AD 到点 E 使 DE = AD ,再连接 BE (或将 ΔACD 绕着点 D 逆时针旋转 180 ° 得到 ΔEBD ) ,把 AB AC 2 AD 集中在 ΔABE 中,利用三角形三边的关系即可判断.

中线 AD 的取值范围是  

(2)问题解决:

如图②,在 ΔABC 中, D BC 边上的中点, DE DF 于点 D DE AB 于点 E DF AC 于点 F ,连接 EF ,求证: BE + CF > EF

(3)问题拓展:

如图③,在四边形 ABCD 中, B + D = 180 ° CB = CD BCD = 140 ° ,以 C 为顶点作一个 70 ° 角,角的两边分别交 AB AD E F 两点,连接 EF ,探索线段 BE DF EF 之间的数量关系,并加以证明.

来源:2016年贵州省贵阳市中考数学试卷
  • 更新:2021-04-27
  • 题型:未知
  • 难度:未知

如图,直角 ΔABC 中, A 为直角, AB = 6 AC = 8 .点 P Q R 分别在 AB BC CA 边上同时开始作匀速运动,2秒后三个点同时停止运动,点 P 由点 A 出发以每秒3个单位的速度向点 B 运动,点 Q 由点 B 出发以每秒5个单位的速度向点 C 运动,点 R 由点 C 出发以每秒4个单位的速度向点 A 运动,在运动过程中:

(1)求证: ΔAPR ΔBPQ ΔCQR 的面积相等;

(2)求 ΔPQR 面积的最小值;

(3)用 t (秒 ) ( 0 t 2 ) 表示运动时间,是否存在 t ,使 PQR = 90 ° ?若存在,请直接写出 t 的值;若不存在,请说明理由.

来源:2017年黑龙江省大庆市中考数学试卷
  • 更新:2021-04-26
  • 题型:未知
  • 难度:未知

阅读下列材料并回答问题:

材料1:如果一个三角形的三边长分别为 a b c ,记 p = a + b + c 2 ,那么三角形的面积为 S = p ( p a ) ( p b ) ( p c )    

古希腊几何学家海伦 ( Heron ,约公元50年),在数学史上以解决几何测量问题而闻名.他在《度量》一书中,给出了公式①和它的证明,这一公式称海伦公式.

我国南宋数学家秦九韶(约 1202 1261 ) ,曾提出利用三角形的三边求面积的秦九韶公式: S = 1 4 [ a 2 b 2 ( a 2 + b 2 c 2 2 ) 2 ]     

下面我们对公式②进行变形: 1 4 [ a 2 b 2 ( a 2 + b 2 c 2 2 ) 2 ] = ( 1 2 ab ) 2 ( a 2 + b 2 c 2 4 ) 2 = ( 1 2 ab + a 2 + b 2 c 2 4 ) ( 1 2 ab a 2 + b 2 c 2 4 ) = 2 ab + a 2 + b 2 c 2 4 · 2 ab a 2 b 2 + c 2 4 = ( a + b ) 2 c 2 4 · c 2 ( a b ) 2 4 = a + b + c 2 · a + b c 2 · a + c b 2 · b + c a 2 = p ( p a ) ( p b ) ( p c )

这说明海伦公式与秦九韶公式实质上是同一公式,所以我们也称①为海伦 秦九韶公式.

问题:如图,在 ΔABC 中, AB = 13 BC = 12 AC = 7 O 内切于 ΔABC ,切点分别是 D E F

(1)求 ΔABC 的面积;

(2)求 O 的半径.

来源:2016年四川省凉山州中考数学试卷
  • 更新:2021-04-23
  • 题型:未知
  • 难度:未知

如图,等边△ ABC中, AB=6,点 DBC上, BD=4,点 E为边 AC上一动点(不与点 C重合),△ CDE关于 DE的轴对称图形为△ FDE

(1)当点 FAC上时,求证: DFAB

(2)设△ ACD的面积为 S 1,△ ABF的面积为 S 2,记 SS 1S 2S是否存在最大值?若存在,求出 S的最大值;若不存在,请说明理由;

(3)当 BFE三点共线时.求 AE的长.

来源:2019年广东省广州市中考数学试卷
  • 更新:2021-04-13
  • 题型:未知
  • 难度:未知

已知Rt△ OAB,∠ OAB=90°,∠ ABO=30°,斜边 OB=4,将Rt△ OAB绕点 O顺时针旋转60°,如图1,连接 BC

(1)填空:∠ OBC  °;

(2)如图1,连接 AC,作 OPAC,垂足为 P,求 OP的长度;

(3)如图2,点 MN同时从点 O出发,在△ OCB边上运动, M沿 OCB路径匀速运动, N沿 OBC路径匀速运动,当两点相遇时运动停止,已知点 M的运动速度为1.5单位/秒,点 N的运动速度为1单位/秒,设运动时间为 x秒,△ OMN的面积为 y,求当 x为何值时 y取得最大值?最大值为多少?

来源:2018年广东省中考数学试卷
  • 更新:2021-04-13
  • 题型:未知
  • 难度:未知

【问题】

如图1,在Rt△ ABC中,∠ ACB=90°, ACBC,过点 C作直线 l平行于 AB.∠ EDF=90°,点 D在直线 l上移动,角的一边 DE始终经过点 B,另一边 DFAC交于点 P,研究 DPDB的数量关系.

【探究发现】

(1)如图2,某数学兴趣小组运用"从特殊到一般"的数学思想,发现当点 D移动到使点 P与点 C重合时,通过推理就可以得到 DPDB,请写出证明过程;

【数学思考】

(2)如图3,若点 PAC上的任意一点(不含端点 AC),受(1)的启发,这个小组过点 DDGCDBC于点 G,就可以证明 DPDB,请完成证明过程;

【拓展引申】

(3)如图4,在(1)的条件下, MAB边上任意一点(不含端点 AB), N是射线 BD上一点,且 AMBN,连接 MNBC交于点 Q,这个数学兴趣小组经过多次取 M点反复进行实验,发现点 M在某一位置时 BQ的值最大.若 ACBC=4,请你直接写出 BQ的最大值.

来源:2019年内蒙古赤峰市中考数学试卷
  • 更新:2021-04-09
  • 题型:未知
  • 难度:未知

如图,在Rt△ ABC中,∠ ABC=90°, BC=3, D为斜边 AC的中点,连接 BD,点 FBC边上的动点(不与点 BC重合),过点 BBEBDDF延长线交于点 E,连接 CE,下列结论:

①若 BFCF,则 CE 2+ AD 2DE 2

②若∠ BDE=∠ BACAB=4,则 CE 15 8

③△ ABD和△ CBE一定相似;

④若∠ A=30°,∠ BCE=90°,则 DE 21

其中正确的是  .(填写所有正确结论的序号)

来源:2019年内蒙古包头市中考数学试卷
  • 更新:2021-04-09
  • 题型:未知
  • 难度:未知

如图,在Rt△ ACB中,∠ ACB=90°, ACBCDAB上的一个动点(不与点 AB重合),连接 CD,将 CD绕点 C顺时针旋转90°得到 CE,连接 DEDEAC相交于点 F,连接 AE.下列结论:

①△ ACE≌△ BCD

②若∠ BCD=25°,则∠ AED=65°;

DE 2=2 CFCA

④若 AB=3 2 AD=2 BD,则 AF 5 3

其中正确的结论是   .(填写所有正确结论的序号)

来源:2018年内蒙古包头市中考数学试卷
  • 更新:2021-04-09
  • 题型:未知
  • 难度:未知

【问题情景】

利用三角形的面积相等来求解的方法是一种常见的等积法,此方法是我们解决几何问题的途径之一.

例如:张老师给小聪提出这样一个问题:

如图1,在△ ABC中, AB=3, BC=6,问△ ABC的高 ADCE的比是多少?

小聪的计算思路是:

根据题意得: S ABC 1 2 BCAD 1 2 ABCE

从而得2 ADCE,∴ AD CE 1 2

请运用上述材料中所积累的经验和方法解决下列问题:

(1)【类比探究】

如图2,在▱ ABCD中,点 EF分别在 ADCD上,且 AFCE,并相交于点 O,连接 BEBF

求证: BO平分角 AOC

(2)【探究延伸】

如图3,已知直线 mn,点 AC是直线 m上两点,点 BD是直线 n上两点,点 P是线段 CD中点,且∠ APB=90°,两平行线 mn间的距离为4.求证: PAPB=2 AB

(3)【迁移应用】

如图4, EAB边上一点, EDADCECB,垂足分别为 DC,∠ DAB=∠ BAB 34 BC=2, AC 26 ,又已知 MN分别为 AEBE的中点,连接 DMCN.求△ DEM与△ CEN的周长之和.

来源:2017年内蒙古鄂尔多斯市中考数学试卷
  • 更新:2021-03-22
  • 题型:未知
  • 难度:未知

如图1,在△ ABC中,设∠ A、∠ B、∠ C的对边分别为 abc,过点 AADBC,垂足为 D,会有sin∠ C AD AC ,则

S ABC 1 2 BC× AD 1 2 × BC× ACsin∠ C 1 2 absin∠ C

S ABC 1 2 absin∠ C

同理 S ABC 1 2 bcsin∠ A

S ABC 1 2 acsin∠ B

通过推理还可以得到另一个表达三角形边角关系的定理﹣余弦定理:

如图2,在△ ABC中,若∠ A、∠ B、∠ C的对边分别为 abc,则

a 2b 2+ c 2﹣2 bccos∠ A

b 2a 2+ c 2﹣2 accos∠ B

c 2a 2+ b 2﹣2 abcos∠ C

用上面的三角形面积公式和余弦定理解决问题:

(1)如图3,在△ DEF中,∠ F=60°,∠ D、∠ E的对边分别是3和8.求 S DEFDE 2

解: S DEF EF× DFsin∠ F  

DE 2EF 2+ DF 2﹣2 EF× DFcos∠ F  

(2)如图4,在△ ABC中,已知 ACBC,∠ C=60°,△ ABC'、△ BCA'、△ ACB'分别是以 ABBCAC为边长的等边三角形,设△ ABC、△ ABC'、△ BCA'、△ ACB'的面积分别为 S 1S 2S 3S 4,求证: S 1+ S 2S 3+ S 4

来源:2017年内蒙古赤峰市中考数学试卷
  • 更新:2021-03-22
  • 题型:未知
  • 难度:未知

如图,在△ ABC与△ ADE中, ABACADAE,∠ BAC=∠ DAE,且点 DAB上,点 E与点 CAB的两侧,连接 BECD,点 MN分别是 BECD的中点,连接 MNAMAN

下列结论:①△ ACD≌△ ABE;②△ ABC∽△ AMN;③△ AMN是等边三角形;④若点 DAB的中点,则 S ABC=2 S ABE

其中正确的结论是  .(填写所有正确结论的序号)

来源:2017年内蒙古包头市中考数学试卷
  • 更新:2021-03-22
  • 题型:未知
  • 难度:未知

如图,等腰中,,点在线段上运动(不与重合),将分别沿直线翻折得到,给出下列结论:

的大小不变;

面积的最小值为 4 3 5

④当点的中点时,是等边三角形,

其中所有正确结论的序号是  

来源:2016年福建省南平市中考数学试卷
  • 更新:2021-03-11
  • 题型:未知
  • 难度:未知

如图,射线 AB 和射线 CB 相交于点 B ABC = α ( 0 ° < α < 180 ° ) ,且 AB = CB .点 D 是射线 CB 上的动点(点 D 不与点 C 和点 B 重合),作射线 AD ,并在射线 AD 上取一点 E ,使 AEC = α ,连接 CE BE

(1)如图①,当点 D 在线段 CB 上, α = 90 ° 时,请直接写出 AEB 的度数;

(2)如图②,当点 D 在线段 CB 上, α = 120 ° 时,请写出线段 AE BE CE 之间的数量关系,并说明理由;

(3)当 α = 120 ° tan DAB = 1 3 时,请直接写出 CE BE 的值.

来源:2020年辽宁省抚顺市中考数学试卷
  • 更新:2021-01-15
  • 题型:未知
  • 难度:未知

初中数学三角形综合题试题