阅读下面材料:
小明遇到这样一个问题:
如图1, 中, ,点 在 上,且 ,求证: .
小明发现,除了直接用角度计算的方法外,还可以用下面两种方法:
方法1:如图2,作 平分 ,与 相交于点 .
方法2:如图3,作 ,与 相交于点 .
(1)根据阅读材料,任选一种方法,证明 .
用学过的知识或参考小明的方法,解决下面的问题:
(2)如图4, 中,点 在 上,点 在 上,且 ,点 在 上,且 ,延长 、 ,相交于点 ,且 .
①在图中找出与 相等的角,并加以证明;
②若 ,猜想线段 与 的数量关系,并证明你的猜想.
在 中, , , ,若 ,如图1,则有 ;若 为锐角三角形时,小明猜想: ,理由如下:如图2,过点 作 于点 ,设 .在 中, ,在 中,
,
当 为锐角三角形时,
所以小明的猜想是正确的.
(1)请你猜想,当 为钝角三角形时, 与 的大小关系.
(2)温馨提示:在图3中,作 边上的高.
(3)证明你猜想的结论是否正确.
(1)阅读理解:
如图①,在 中,若 , ,求 边上的中线 的取值范围.
解决此问题可以用如下方法:延长 到点 使 ,再连接 (或将 绕着点 逆时针旋转 得到 ,把 、 , 集中在 中,利用三角形三边的关系即可判断.
中线 的取值范围是 ;
(2)问题解决:
如图②,在 中, 是 边上的中点, 于点 , 交 于点 , 交 于点 ,连接 ,求证: ;
(3)问题拓展:
如图③,在四边形 中, , , ,以 为顶点作一个 角,角的两边分别交 , 于 、 两点,连接 ,探索线段 , , 之间的数量关系,并加以证明.
如图,直角 中, 为直角, , .点 , , 分别在 , , 边上同时开始作匀速运动,2秒后三个点同时停止运动,点 由点 出发以每秒3个单位的速度向点 运动,点 由点 出发以每秒5个单位的速度向点 运动,点 由点 出发以每秒4个单位的速度向点 运动,在运动过程中:
(1)求证: , , 的面积相等;
(2)求 面积的最小值;
(3)用 (秒 表示运动时间,是否存在 ,使 ?若存在,请直接写出 的值;若不存在,请说明理由.
阅读下列材料并回答问题:
材料1:如果一个三角形的三边长分别为 , , ,记 ,那么三角形的面积为 . ①
古希腊几何学家海伦 ,约公元50年),在数学史上以解决几何测量问题而闻名.他在《度量》一书中,给出了公式①和它的证明,这一公式称海伦公式.
我国南宋数学家秦九韶(约 约 ,曾提出利用三角形的三边求面积的秦九韶公式: . ②
下面我们对公式②进行变形: .
这说明海伦公式与秦九韶公式实质上是同一公式,所以我们也称①为海伦 秦九韶公式.
问题:如图,在 中, , , , 内切于 ,切点分别是 、 、 .
(1)求 的面积;
(2)求 的半径.
如图,等边△ ABC中, AB=6,点 D在 BC上, BD=4,点 E为边 AC上一动点(不与点 C重合),△ CDE关于 DE的轴对称图形为△ FDE.
(1)当点 F在 AC上时,求证: DF∥ AB;
(2)设△ ACD的面积为 S 1,△ ABF的面积为 S 2,记 S= S 1﹣ S 2, S是否存在最大值?若存在,求出 S的最大值;若不存在,请说明理由;
(3)当 B, F, E三点共线时.求 AE的长.
已知Rt△ OAB,∠ OAB=90°,∠ ABO=30°,斜边 OB=4,将Rt△ OAB绕点 O顺时针旋转60°,如图1,连接 BC.
(1)填空:∠ OBC= °;
(2)如图1,连接 AC,作 OP⊥ AC,垂足为 P,求 OP的长度;
(3)如图2,点 M, N同时从点 O出发,在△ OCB边上运动, M沿 O→ C→ B路径匀速运动, N沿 O→ B→ C路径匀速运动,当两点相遇时运动停止,已知点 M的运动速度为1.5单位/秒,点 N的运动速度为1单位/秒,设运动时间为 x秒,△ OMN的面积为 y,求当 x为何值时 y取得最大值?最大值为多少?
【问题】
如图1,在Rt△ ABC中,∠ ACB=90°, AC= BC,过点 C作直线 l平行于 AB.∠ EDF=90°,点 D在直线 l上移动,角的一边 DE始终经过点 B,另一边 DF与 AC交于点 P,研究 DP和 DB的数量关系.
【探究发现】
(1)如图2,某数学兴趣小组运用"从特殊到一般"的数学思想,发现当点 D移动到使点 P与点 C重合时,通过推理就可以得到 DP= DB,请写出证明过程;
【数学思考】
(2)如图3,若点 P是 AC上的任意一点(不含端点 A、 C),受(1)的启发,这个小组过点 D作 DG⊥ CD交 BC于点 G,就可以证明 DP= DB,请完成证明过程;
【拓展引申】
(3)如图4,在(1)的条件下, M是 AB边上任意一点(不含端点 A、 B), N是射线 BD上一点,且 AM= BN,连接 MN与 BC交于点 Q,这个数学兴趣小组经过多次取 M点反复进行实验,发现点 M在某一位置时 BQ的值最大.若 AC= BC=4,请你直接写出 BQ的最大值.
如图,在Rt△ ABC中,∠ ABC=90°, BC=3, D为斜边 AC的中点,连接 BD,点 F是 BC边上的动点(不与点 B、 C重合),过点 B作 BE⊥ BD交 DF延长线交于点 E,连接 CE,下列结论:
①若 BF= CF,则 CE 2+ AD 2= DE 2;
②若∠ BDE=∠ BAC, AB=4,则 CE= ;
③△ ABD和△ CBE一定相似;
④若∠ A=30°,∠ BCE=90°,则 DE= .
其中正确的是 .(填写所有正确结论的序号)
如图,在Rt△ ACB中,∠ ACB=90°, AC= BC, D是 AB上的一个动点(不与点 A, B重合),连接 CD,将 CD绕点 C顺时针旋转90°得到 CE,连接 DE, DE与 AC相交于点 F,连接 AE.下列结论:
①△ ACE≌△ BCD;
②若∠ BCD=25°,则∠ AED=65°;
③ DE 2=2 CF• CA;
④若 AB=3 , AD=2 BD,则 AF= .
其中正确的结论是 .(填写所有正确结论的序号)
【问题情景】
利用三角形的面积相等来求解的方法是一种常见的等积法,此方法是我们解决几何问题的途径之一.
例如:张老师给小聪提出这样一个问题:
如图1,在△ ABC中, AB=3, BC=6,问△ ABC的高 AD与 CE的比是多少?
小聪的计算思路是:
根据题意得: S △ ABC= BC• AD= AB• CE.
从而得2 AD= CE,∴ =
请运用上述材料中所积累的经验和方法解决下列问题:
(1)【类比探究】
如图2,在▱ ABCD中,点 E、 F分别在 AD, CD上,且 AF= CE,并相交于点 O,连接 BE、 BF,
求证: BO平分角 AOC.
(2)【探究延伸】
如图3,已知直线 m∥ n,点 A、 C是直线 m上两点,点 B、 D是直线 n上两点,点 P是线段 CD中点,且∠ APB=90°,两平行线 m、 n间的距离为4.求证: PA• PB=2 AB.
(3)【迁移应用】
如图4, E为 AB边上一点, ED⊥ AD, CE⊥ CB,垂足分别为 D, C,∠ DAB=∠ B, AB= , BC=2, AC= ,又已知 M、 N分别为 AE、 BE的中点,连接 DM、 CN.求△ DEM与△ CEN的周长之和.
如图1,在△ ABC中,设∠ A、∠ B、∠ C的对边分别为 a, b, c,过点 A作 AD⊥ BC,垂足为 D,会有sin∠ C= ,则
S △ ABC= BC× AD= × BC× ACsin∠ C= absin∠ C,
即 S △ ABC= absin∠ C
同理 S △ ABC= bcsin∠ A
S △ ABC= acsin∠ B
通过推理还可以得到另一个表达三角形边角关系的定理﹣余弦定理:
如图2,在△ ABC中,若∠ A、∠ B、∠ C的对边分别为 a, b, c,则
a 2= b 2+ c 2﹣2 bccos∠ A
b 2= a 2+ c 2﹣2 accos∠ B
c 2= a 2+ b 2﹣2 abcos∠ C
用上面的三角形面积公式和余弦定理解决问题:
(1)如图3,在△ DEF中,∠ F=60°,∠ D、∠ E的对边分别是3和8.求 S △ DEF和 DE 2.
解: S △ DEF= EF× DFsin∠ F= ;
DE 2= EF 2+ DF 2﹣2 EF× DFcos∠ F= .
(2)如图4,在△ ABC中,已知 AC> BC,∠ C=60°,△ ABC'、△ BCA'、△ ACB'分别是以 AB、 BC、 AC为边长的等边三角形,设△ ABC、△ ABC'、△ BCA'、△ ACB'的面积分别为 S 1、 S 2、 S 3、 S 4,求证: S 1+ S 2= S 3+ S 4.
如图,在△ ABC与△ ADE中, AB= AC, AD= AE,∠ BAC=∠ DAE,且点 D在 AB上,点 E与点 C在 AB的两侧,连接 BE, CD,点 M、 N分别是 BE、 CD的中点,连接 MN, AM, AN.
下列结论:①△ ACD≌△ ABE;②△ ABC∽△ AMN;③△ AMN是等边三角形;④若点 D是 AB的中点,则 S △ ABC=2 S △ ABE.
其中正确的结论是 .(填写所有正确结论的序号)
如图,等腰中,,,点在线段上运动(不与、重合),将与分别沿直线、翻折得到与,给出下列结论:
①;
②的大小不变;
③面积的最小值为 ;
④当点在的中点时,是等边三角形,
其中所有正确结论的序号是 .