如图,在矩形 中, ,对角线相交于点 ,动点 从点 向点 运动(到点 即停止),点 是 上一动点,且满足 ,连结 .在点 、 运动过程中,则以下结论正确的是 .(写出所有正确结论的序号)
①点 、 的运动速度不相等;
②存在某一时刻使 ;
③ 逐渐减小;
④ .
如图,在矩形 中, , 相交于点 ,过点 作 于点 ,交 于点 ,过点 作 交 于点 .交 于点 ,连接 , .有下列结论:①四边形 为平行四边形;② ;③ 为等边三角形;④当 时,四边形 是菱形.其中,正确结论的序号 .
如图,正方形 中,点 是 边上一点,连结 ,以 为对角线作正方形 ,边 与正方形 的对角线 相交于点 ,连结 ,有以下五个结论:
① ;
② ;
③ ;
④ ;
⑤若 ,则 .
你认为其中正确是 .(填写序号)
如图,在边长为4的正方形 中,点 是 的中点,点 在 上,且 , , 相交于点 ,则 的面积是 .
如图,等边三角形 的边长为4, 的半径为 , 为 边上一动点,过点 作 的切线 ,切点为 ,则 的最小值为 .
如图,已知点 ,点 为直线 上的一动点,点 , , 于点 ,连接 .若直线 与 正半轴所夹的锐角为 ,那么当 的值最大时, 的值为 .
在 中, ,有一个锐角为 , .若点 在直线 上(不与点 , 重合),且 ,则 的长为 .
如图,在正方形 中,点 是对角线 的中点,点 在线段 上,连接 并延长交 于点 ,过点 作 交 于点 ,连接 、 , 交 于 ,现有以下结论:① ;② ;③ ;④ 为定值;⑤ .以上结论正确的有 (填入正确的序号即可).
如图,在平面直角坐标系中, 轴,垂足为 B,将△ ABO绕点 A逆时针旋转到△ AB 1 O 1的位置,使点 B的对应点 B 1落在直线 x上,再将△ AB 1 O 1绕点 B 1逆时针旋转到△ A 1 B 1 O 2的位置,使点 O 1的对应点 O 2也落在直线 x上,以此进行下去…若点 B的坐标为(0,3),则点 B 21的纵坐标为 .
如图,在边长为6的等边 中,点 , 分别是边 , 上的动点,且 ,连接 , 交于点 ,连接 ,则 的最小值为 .
如图,在矩形 中, , ,点 , 分别在边 , 上,且 ,按以下步骤操作:
第一步,沿直线 翻折,点 的对应点 恰好落在对角线 上,点 的对应点为 ,则线段 的长为 ;
第二步,分别在 , 上取点 , ,沿直线 继续翻折,使点 与点 重合,则线段 的长为 .
如图,在 中,点 是 边上的一点,且 ,连接 并取 的中点 ,连接 ,若 ,且 ,则 的长为 .
如图,先将矩形纸片 沿 折叠 边与 在 的异侧), 交 于点 ;再将纸片折叠,使 与 在同一条直线上,折痕为 .若 ,纸片宽 ,则 .
如图,点 在直线 上,点 的横坐标为2,过点 作 ,交 轴于点 ,以 为边,向右作正方形 ,延长 交 轴于点 ;以 为边,向右作正方形 ,延长 交 轴于点 ;以 为边,向右作正方形 ,延长 交 轴于点 ; ;照这个规律进行下去,则第 个正方形 的边长为
(结果用含正整数 的代数式表示).