初中数学

如图,在△ABC中,∠A=30°,∠B=45°,AC=,求AB的长.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

能够完全重合的平行四边形纸片 ABCD AEFG 按图①方式摆放,其中 AD = AG = 5 AB = 9 .点 D G 分别在边 AE AB 上, CD FG 相交于点 H

【探究】求证:四边形 AGHD 是菱形.

【操作一】固定图①中的平行四边形纸片 ABCD ,将平行四边形纸片 AEFG 绕着点 A 顺时针旋转一定的角度,使点 F 与点 C 重合,如图②.则这两张平行四边形纸片未重叠部分图形的周长和为       

【操作二】将图②中的平行四边形纸片 AEFG 绕着点 A 继续顺时针旋转一定的角度,使点 E 与点 B 重合,连接 DG CF ,如图③,若 sin BAD = 4 5 ,则四边形 DCFG 的面积为   

来源:2020年吉林省中考数学试卷
  • 更新:2021-01-15
  • 题型:未知
  • 难度:未知

如图,点A、B、C表示某旅游景区三个缆车站的位置,线段AB、BC表示连接缆车站的钢缆,已知A、B、C三点在同一铅直平面内,它们的海拔高度AA′,BB′,CC′分别为110米、310米、710米,钢缆AB的坡度i1=1:2,钢缆BC的坡度i2=1:1,景区因改造缆车线路,需要从A到C直线架设一条钢缆,那么钢缆AC的长度是多少米?(注:坡度i是指坡面的铅直高度与水平宽度的比)

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

关于 x 的方程 2 x 2 5 x sin A + 2 = 0 有两个相等的实数根,其中 A 是锐角三角形 ABC 的一个内角.

(1)求 sin A 的值;

(2)若关于 y 的方程 y 2 10 y + k 2 4 k + 29 = 0 的两个根恰好是 ΔABC 的两边长,求 ΔABC 的周长.

来源:2018年山东省东营市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

如图,在Rt△ABC中,∠C=90°,点D是BC边上的一点,CD=6,cos∠ADC=,tanB=,求BD的长.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在矩形 ABCD 中, AB = 2 AD = 1 ,点 E 为边 CD 上的一点(与 C D 不重合),四边形 ABCE 关于直线 AE 的对称图形为四边形 ANME ,延长 ME AB 于点 P ,记四边形 PADE 的面积为 S

(1)若 DE = 3 3 ,求 S 的值;

(2)设 DE = x ,求 S 关于 x 的函数表达式.

来源:2020年江苏省无锡市中考数学试卷
  • 更新:2021-01-08
  • 题型:未知
  • 难度:未知

已知:如图,在 ΔABC 中, AB = AC ,点 P 是底边 BC 上一点且满足 PA = PB O ΔPAB 的外接圆,过点 P PD / / AB AC 于点 D

(1)求证: PD O 的切线;

(2)若 BC = 8 tan ABC = 2 2 ,求 O 的半径.

来源:2018年四川省资阳市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图,在 ABCD 中, E F 是对角线 BD 上的两点(点 E 在点 F 左侧),且 AEB = CFD = 90 °

(1)求证:四边形 AECF 是平行四边形;

(2)当 AB = 5 tan ABE = 3 4 CBE = EAF 时,求 BD 的长.

来源:2021年浙江省温州市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

如图,已知 AB O 的直径, ACD AD ^ 所对的圆周角, ACD = 30 °

(1)求 DAB 的度数;

(2)过点 D DE AB ,垂足为 E DE 的延长线交 O 于点 F .若 AB = 4 ,求 DF 的长.

来源:2021年浙江省湖州市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

如图,已知点 C 是以 AB 为直径的半圆上一点, D AB 延长线上一点,过点 D BD 的垂线交 AC 的延长线于点 E ,连结 CD ,且 CD = ED

(1)求证: CD O 的切线;

(2)若 tan DCE = 2 BD = 1 ,求 O 的半径.

来源:2021年四川省乐山市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

数学小组研究如下问题:长春市的纬度约为北纬 44 ° ,求北纬 44 ° 纬线的长度,小组成员查阅了相关资料,得到三条信息:

(1)在地球仪上,与南,北极距离相等的大圆圈,叫赤道,所有与赤道平行的圆圈叫纬线;

(2)如图, O 是经过南、北极的圆,地球半径 OA 约为 6400 km .弦 BC / / OA ,过点 O OK BC 于点 K ,连接 OB .若 AOB = 44 ° ,则以 BK 为半径的圆的周长是北纬 44 ° 纬线的长度;

(3)参考数据: π 取3, sin 44 ° = 0 . 69 cos 44 ° = 0 . 72

小组成员给出了如下解答,请你补充完整:

解:因为 BC / / OA AOB = 44 °

所以 B = AOB = 44 ° (    ) (填推理依据),

因为 OK BC ,所以 BKO = 90 °

Rt Δ BOK 中, OB = OA = 6400

BK = OB ×   (填" sin B "或" cos B " )

所以北纬 44 ° 的纬线长 C = 2 π BK

= 2 × 3 × 6400 ×   (填相应的三角形函数值)

   ( km ) (结果取整数).

来源:2021年吉林省中考数学试卷
  • 更新:2021-08-21
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, ACB = 90 ° AC = m BC = n m > n ,点 P 是边 AB 上一点,连接 CP ,将 ΔACP 沿 CP 翻折得到 ΔQCP

(1)若 m = 4 n = 3 ,且 PQ AB ,求 BP 的长;

(2)连接 BQ ,若四边形 BCPQ 是平行四边形,求 m n 之间的关系式.

来源:2018年江苏省无锡市中考数学试卷(副卷)
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

如图1,在平面直角坐标系中,直线 MN 分别与 x 轴、 y 轴交于点 M ( 6 , 0 ) N ( 0 2 3 ) ,等边 ΔABC 的顶点 B 与原点 O 重合, BC 边落在 x 轴正半轴上,点 A 恰好落在线段 MN 上,将等边 ΔABC 从图1的位置沿 x 轴正方向以每秒1个单位长度的速度平移,边 AB AC 分别与线段 MN 交于点 E F (如图2所示),设 ΔABC 平移的时间为 t ( s )

(1)等边 ΔABC 的边长为  

(2)在运动过程中,当 t =   时, MN 垂直平分 AB

(3)若在 ΔABC 开始平移的同时.点 P ΔABC 的顶点 B 出发.以每秒2个单位长度的速度沿折线 BA AC 运动.当点 P 运动到 C 时即停止运动. ΔABC 也随之停止平移.

①当点 P 在线段 BA 上运动时,若 ΔPEF ΔMNO 相似.求 t 的值;

②当点 P 在线段 AC 上运动时,设 S ΔPEF = S ,求 S t 的函数关系式,并求出 S 的最大值及此时点 P 的坐标.

来源:2017年四川省攀枝花市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

ΔABC 中, AB = BC ,点 O AC 的中点,点 P AC 上的一个动点(点 P 不与点 A O C 重合).过点 A ,点 C 作直线 BP 的垂线,垂足分别为点 E 和点 F ,连接 OE OF

(1)如图1,请直接写出线段 OE OF 的数量关系;

(2)如图2,当 ABC = 90 ° 时,请判断线段 OE OF 之间的数量关系和位置关系,并说明理由

(3)若 | CF AE | = 2 EF = 2 3 ,当 ΔPOF 为等腰三角形时,请直接写出线段 OP 的长.

来源:2018年辽宁省葫芦岛市中考数学试卷
  • 更新:2021-05-10
  • 题型:未知
  • 难度:未知

如图,抛物线 y = a x 2 + bx - 5 ( a 0 ) 经过点 A ( 4 , - 5 ) ,与 x 轴的负半轴交于点 B ,与 y 轴交于点 C ,且 OC = 5 OB ,抛物线的顶点为点 D

(1)求这条抛物线的表达式;

(2)联结 AB BC CD DA ,求四边形 ABCD 的面积;

(3)如果点 E y 轴的正半轴上,且 BEO = ABC ,求点 E 的坐标.

来源:2016年上海市中考数学试卷
  • 更新:2020-12-30
  • 题型:未知
  • 难度:未知

初中数学解直角三角形解答题