如图,点A、B、C表示某旅游景区三个缆车站的位置,线段AB、BC表示连接缆车站的钢缆,已知A、B、C三点在同一铅直平面内,它们的海拔高度AA′,BB′,CC′分别为110米、310米、710米,钢缆AB的坡度i1=1:2,钢缆BC的坡度i2=1:1,景区因改造缆车线路,需要从A到C直线架设一条钢缆,那么钢缆AC的长度是多少米?(注:坡度i是指坡面的铅直高度与水平宽度的比)
超市购进某种苹果,如果进价增加2元 / 千克要用300元;如果进价减少2元 / 千克,同样数量的苹果只用200元.
(1)求苹果的进价;
(2)如果购进这种苹果不超过100千克,就按原价购进;如果购进苹果超过100千克,超过部分购进价格减少2元 / 千克,写出购进苹果的支出 y (元 ) 与购进数量 x (千克)之间的函数关系式;
(3)超市一天购进苹果数量不超过300千克,且购进苹果当天全部销售完,据统计,销售单价 z (元 / 千克)与一天销售数量 x (千克)的关系为 z = - 1 100 x + 12 .在(2)的条件下,要使超市销售苹果利润 w (元 ) 最大,求一天购进苹果数量.(利润 = 销售收入 - 购进支出)
如图, A , B 是 ⊙ O 上两点,且 AB = OA ,连接 OB 并延长到点 C ,使 BC = OB ,连接 AC .
(1)求证: AC 是 ⊙ O 的切线;
(2)点 D , E 分别是 AC , OA 的中点, DE 所在直线交 ⊙ O 于点 F , G , OA = 4 ,求 GF 的长.
如图,反比例函数的图象与过点 A ( 0 , - 1 ) , B ( 4 , 1 ) 的直线交于点 B 和 C .
(1)求直线 AB 和反比例函数的解析式;
(2)已知点 D ( - 1 , 0 ) ,直线 CD 与反比例函数图象在第一象限的交点为 E ,直接写出点 E 的坐标,并求 ΔBCE 的面积.
已知关于 x 的一元二次方程 x 2 - ( 2 k + 1 ) x + k 2 + k = 0 .
(1)求证:无论 k 取何值,方程都有两个不相等的实数根.
(2)如果方程的两个实数根为 x 1 , x 2 ,且 k 与 x 1 x 2 都为整数,求 k 所有可能的值.
某市体育中考自选项目有乒乓球、篮球和羽毛球,每个考生任选一项作为自选考试项目.
(1)求考生小红和小强自选项目相同的概率;
(2)除自选项目之外,长跑和掷实心球为必考项目.小红和小强的体育中考各项成绩(百分制)的统计图表如下:
考生
自选项目
长跑
掷实心球
小红
95
90
小强
①补全条形统计图.
②如果体育中考按自选项目占 50 % 、长跑占 30 % 、掷实心球占 20 % 计算成绩(百分制),分别计算小红和小强的体育中考成绩.