已知关于 x 的一元二次方程 x 2 - ( 2 k + 1 ) x + k 2 + k = 0 .
(1)求证:无论 k 取何值,方程都有两个不相等的实数根.
(2)如果方程的两个实数根为 x 1 , x 2 ,且 k 与 x 1 x 2 都为整数,求 k 所有可能的值.
如图,已知点O(0,0),A(-5,0),B(2,1),抛物线l:y=-(x-h)2+1(h为常数)与y轴的交点为C.(1)l经过点B,求它的解析式,并写出此时l的对称轴及顶点坐标:(2)设点C的级坐标为yc,求yc的最大值,此时l上有两点(x1,y1),(x2,y2),其中x1>x2≥0,比较y1与y1的大小;(3)当线段OA被l只分为两部分,且这两部分的比是1:4时,求h的值.
某厂生产A,B两种产品.其单价随市场变化而做相应调整.营销人员根据前三次单价变化的情况,绘制了如下统计表及不完整的折线图:A,B产品单价变化统计表
并求得A产品三次单价的平均数和方差::.(1)补全图中B产品单价变化的折线图.B产品第三次的单价比上一次的单价降低了____%;(2)求B产品三次单价的方差,并比较哪种产品的单价波动小:(3)该厂决定第四次调价,A产品的单价仍为6.5元/件,B产品的单价比3元/件上调m%(m>0),使得A产品这四次单价的中位数是B产品四次单价中位数的2倍少1.求m的值.
水平放置的容器内原有210毫米高的水,如图.将若干个球逐一放入容器中,每放入一个大球水面就上升4毫米,每放入一个小球水面就上升3毫米,假定放入容器中的所有球完全浸没水中且水不溢出,设水面高为y毫米.(1)只放入大球,且个数为x大,求y与x大的函数关系式(不必写出x大的范围);(2)仅放入6个大球后,开始放入小球,且小球个数为x小.①求y与x小的函数关系式(不必写出x小的范围);②限定水面高不超过260毫米,最多放入几个小球?
嘉淇同学要证明命“两相对边分别相等的四边形是平行四边形”是正确的,她先用尺规作出了如图的四边形ABCD,并写出了如下不完整的已知和求证.已知:如图,在四边形ABCD中,BC=AD,AB=____.求证:四边形ABCD是____四过形.(1)在方框中填空,以补全已知和求证;(2)按嘉淇的想法写出证明:证明:(3)用文宇叙述所证命题的逆命题为____________________.
老师在黑板上写了一个正确的演算过程,随后用手掌捂住了一个二次三项式,形式如下:-3x=x2-5x+1.(1)求所捂的二次三项式:(2)若,求所捂二次三项式的值.