如图,在矩形 中, , ,点 是 边上的点, ,连接 , 交于点 .
(1)求证: ;
(2)连接 ,求 的值;
(3)连接 交 于点 ,求 的值.
由下列条件解直角三角形:在Rt△ABC中,∠C=90°:
(1)已知c=20,∠A=45°;
(2)已知a+c=12,∠B=60°
阅读:如图(1),点P(x,y)在平面直角坐标系中,过点P作PA⊥x轴,垂足为A,将点P绕垂足A顺时针旋转角得到对应点,我们称点P到点的运动为倾斜运动.例如:点倾斜30°运动后的对应点为.图形E在平面直角坐标系中,图形E上的所有点都作倾斜运动后得到图形,这样的运动称为图形E的倾斜运动.
理解:(1)点倾斜60°运动后的对应点的坐标为 ;
(2)如图(2),平行于x轴的线段MN倾斜运动后得到对应线段,与MN平行且相等吗?说明理由.
应用:(1)如图(3),正方形AOBC倾斜运动后,其各边中点E,F,G,H的对应点,,,构成的四边形是什么特殊四边形: ;
(2)如图(4),已知点A(0,4), B(2,0),C(3,2),将△ABC倾斜运动后能不能得到, 且为直角?其中点,,为点A,B,C的对应点.若能,请写出的值,若不能,请说明理由.参考公式: .
如图, 为 的直角边 上一点,以 为半径的 与斜边 相切于点 ,交 于点 .已知 , .
(1)求 的长;
(2)求图中阴影部分的面积.
(本小题满分6分)如图,AC、BD是一斜坡AB上的两幢楼房,斜坡AB的坡度是1:2,从点A测得楼BD顶部D处的仰角60º,从点B测得楼AC顶部C处的仰角30º,楼BD自身高度BD比楼AC高12米,求楼AC和楼BD之间的水平距离?(结果保留根号)
如图,已知是的直径,,是上两点,.过点作交的延长线于点.
(1)求证:是的切线;
(2)若 ,,求的直径.
如图,在 中, , 是对角线 上的两点(点 在点 左侧),且 .
(1)求证:四边形 是平行四边形;
(2)当 , , 时,求 的长.
如图,已知 是 的直径, 是 所对的圆周角, .
(1)求 的度数;
(2)过点 作 ,垂足为 , 的延长线交 于点 .若 ,求 的长.
如图,已知点 是以 为直径的半圆上一点, 是 延长线上一点,过点 作 的垂线交 的延长线于点 ,连结 ,且 .
(1)求证: 是 的切线;
(2)若 , ,求 的半径.
数学小组研究如下问题:长春市的纬度约为北纬 ,求北纬 纬线的长度,小组成员查阅了相关资料,得到三条信息:
(1)在地球仪上,与南,北极距离相等的大圆圈,叫赤道,所有与赤道平行的圆圈叫纬线;
(2)如图, 是经过南、北极的圆,地球半径 约为 .弦 ,过点 作 于点 ,连接 .若 ,则以 为半径的圆的周长是北纬 纬线的长度;
(3)参考数据: 取3, , .
小组成员给出了如下解答,请你补充完整:
解:因为 , ,
所以 (填推理依据),
因为 ,所以 ,
在 中, .
(填" "或" " .
所以北纬 的纬线长 .
(填相应的三角形函数值)
(结果取整数).
如图,在 中, , , , ,点 是边 上一点,连接 ,将 沿 翻折得到 .
(1)若 , ,且 ,求 的长;
(2)连接 ,若四边形 是平行四边形,求 与 之间的关系式.
如图1,在平面直角坐标系中,直线 分别与 轴、 轴交于点 , , ,等边 的顶点 与原点 重合, 边落在 轴正半轴上,点 恰好落在线段 上,将等边 从图1的位置沿 轴正方向以每秒1个单位长度的速度平移,边 , 分别与线段 交于点 , (如图2所示),设 平移的时间为 .
(1)等边 的边长为 ;
(2)在运动过程中,当 时, 垂直平分 ;
(3)若在 开始平移的同时.点 从 的顶点 出发.以每秒2个单位长度的速度沿折线 运动.当点 运动到 时即停止运动. 也随之停止平移.
①当点 在线段 上运动时,若 与 相似.求 的值;
②当点 在线段 上运动时,设 ,求 与 的函数关系式,并求出 的最大值及此时点 的坐标.
在 中, ,点 是 的中点,点 是 上的一个动点(点 不与点 , , 重合).过点 ,点 作直线 的垂线,垂足分别为点 和点 ,连接 , .
(1)如图1,请直接写出线段 与 的数量关系;
(2)如图2,当 时,请判断线段 与 之间的数量关系和位置关系,并说明理由
(3)若 , ,当 为等腰三角形时,请直接写出线段 的长.