初中数学

如图,在 O 中,半径 OA OB ,过点 OA 的中点 C FD / / OB O D F 两点,且 CD = 3 ,以 O 为圆心, OC 为半径作 CE ̂ ,交 OB E 点.

(1)求 O 的半径 OA 的长;

(2)计算阴影部分的面积.

来源:2016年新疆生产建设兵团中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

(本小题满分8分)马航MH370失联后,我国政府积极参与搜救.某日,我国两艘专业救助船A、B同时收到有关可疑漂浮物的讯息,可疑漂浮物P在救助船A的北偏东53.50°方向上,在救助船B的西北方向上,船B在船A正东方向140海里处.(参考数据:sin36.5°≈0.6,cos36.5°≈0.8,tan36.5°≈0.75).

(1)求可疑漂浮物P到A、B两船所在直线的距离;
(2)若救助船A、救助船B分别以40海里/时,30海里/时的速度同时出发,匀速直线前往搜救,试通过计算判断哪艘船先到达P处.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

计算下列各题:
(1)
(2)

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在△ABC中,点D在AC上,DA=DB,∠C=∠DBC,以AB为直径的交AC于点E,F是上的点,且AF=BF.

(1)求证:BC是的切线;
(2)若sinC=,AE=,求sinF的值和AF的长.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知四边形 ABCD 的一组对边 AD BC 的延长线交于点 E

(1)如图1,若 ABC = ADC = 90 ° ,求证: ED EA = EC EB

(2)如图2,若 ABC = 120 ° cos ADC = 3 5 CD = 5 AB = 12 ΔCDE 的面积为6,求四边形 ABCD 的面积;

(3)如图3,另一组对边 AB DC 的延长线相交于点 F .若 cos ABC = cos ADC = 3 5 CD = 5 CF = ED = n ,直接写出 AD 的长(用含 n 的式子表示)

来源:2017年湖北省武汉市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图,在△ABC中,∠ABC=90°,以AB的中点O为圆心,OA为半径的圆交AC于点D,E是BC的中点,连接DE,OE.

(1)判断DE与⊙O的位置关系,并说明理由;
(2)若cos∠BAD=,BE=,求OE的长.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知α为锐角,且sin(α+15°)=,求:﹣2cosα﹣(π﹣3.14)0+tanα+(﹣1

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

计算:

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,把 ΔEFP 放置在菱形 ABCD 中,使得顶点 E F P 分别在线段 AB AD AC 上,已知 EP = FP = 6 EF = 6 3 BAD = 60 ° ,且 AB > 6 3

(1)求 EPF 的大小;

(2)若 AP = 10 ,求 AE + AF 的值;

(3)若 ΔEFP 的三个顶点 E F P 分别在线段 AB AD AC 上运动,请直接写出 AP 长的最大值和最小值.

来源:2016年山东省枣庄市中考数学试卷
  • 更新:2021-05-14
  • 题型:未知
  • 难度:未知

计算:
(1)2sin45°+          
(2)

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

问题:已知 α β 均为锐角, tan α = 1 2 tan β = 1 3 ,求 α + β 的度数.

探究:(1)用6个小正方形构造如图所示的网格图(每个小正方形的边长均为 1 ) ,请借助这个网格图求出 α + β 的度数;

延伸:(2)设经过图中 M P H 三点的圆弧与 AH 交于 R ,求 MR ̂ 的弧长.

来源:2018年湖北省荆州市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

如图,四边形 ABCD 内接于 O BC O 的直径, AC BD 交于点 E P CB 延长线上一点,连接 PA ,且 PAB = ADB

(1)求证: PA O 的切线;

(2)若 AB = 6 tan ADB = 3 4 ,求 PB 长;

(3)在(2)的条件下,若 AD = CD ,求 ΔCDE 的面积.

来源:2018年湖北省鄂州市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

如图,已知 BF O 的直径, A O 上(异于 B F ) 一点, O 的切线 MA FB 的延长线交于点 M P AM 上一点, PB 的延长线交 O 于点 C D BC 上一点且 PA = PD AD 的延长线交 O 于点 E

(1)求证: BE ̂ = CE ̂

(2)若 ED EA 的长是一元二次方程 x 2 - 5 x + 5 = 0 的两根,求 BE 的长;

(3)若 MA = 6 2 sin AMF = 1 3 ,求 AB 的长.

来源:2017年湖北省鄂州市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图1, OABC 的边 OC x 轴的正半轴上, OC = 5 ,反比例函数 y = m x ( x > 0 ) 的图象经过点 A ( 1 , 4 )

(1)求反比例函数的关系式和点 B 的坐标;

(2)如图2,过 BC 的中点 D DP / / x 轴交反比例函数图象于点 P ,连接 AP OP

①求 ΔAOP 的面积;

②在 OABC 的边上是否存在点 M ,使得 ΔPOM 是以 PO 为斜边的直角三角形?若存在,请求出所有符合条件的点 M 的坐标;若不存在,请说明理由.

来源:2016年山东省济南市中考数学试卷
  • 更新:2021-05-14
  • 题型:未知
  • 难度:未知

计算:2sin60°+cos60°-3tan30°.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

初中数学解直角三角形计算题