初中数学

如图,在菱形 ABCD 中, BAD = 120 ° DE BC BC 的延长线于点 E .连结 AE BD 于点 F ,交 CD 于点 G FH CD 于点 H ,连结 CF .有下列结论:① AF = CF ;② A F 2 = EF FG ;③ FG : EG = 4 : 5 ;④ cos GFH = 3 21 14 .其中所有正确结论的序号为   

来源:2021年四川省资阳市中考数学试卷
  • 更新:2021-08-15
  • 题型:未知
  • 难度:未知

如图,在矩形 ABCD 中, AD = 3 AB ,对角线相交于点 O ,动点 M 从点 B 向点 A 运动(到点 A 即停止),点 N AD 上一动点,且满足 MON = 90 ° ,连结 MN .在点 M N 运动过程中,则以下结论正确的是   .(写出所有正确结论的序号)

①点 M N 的运动速度不相等;

②存在某一时刻使 S ΔAMN = S ΔMON

S ΔAMN 逐渐减小;

M N 2 = B M 2 + D N 2

来源:2021年四川省宜宾市中考数学试卷
  • 更新:2021-08-15
  • 题型:未知
  • 难度:未知

如图, AC O 的直径, BC BD O 的弦, M BC 的中点, OM BD 交于点 F ,过点 D DE BC ,交 BC 的延长线于点 E ,且 CD 平分 ACE

(1)求证: DE O 的切线;

(2)求证: CDE = DBE

(3)若 DE = 6 tan CDE = 2 3 ,求 BF 的长.

来源:2021年新疆生产建设兵团中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

已知,在 ΔABC 中, BAC = 90 ° AB = AC

(1)如图1,已知点 D BC 边上, DAE = 90 ° AD = AE ,连结 CE .试探究 BD CE 的关系;

(2)如图2,已知点 D BC 下方, DAE = 90 ° AD = AE ,连结 CE .若 BD AD AB = 2 10 CE = 2 AD BC 于点 F ,求 AF 的长;

(3)如图3,已知点 D BC 下方,连结 AD BD CD .若 CBD = 30 ° BAD > 15 ° A B 2 = 6 A D 2 = 4 + 3 ,求 sin BCD 的值.

来源:2021年四川省资阳市中考数学试卷
  • 更新:2021-08-15
  • 题型:未知
  • 难度:未知

Rt Δ ABC 中, C = 90 ° ,有一个锐角为 60 ° AB = 4 .若点 P 在直线 AB 上(不与点 A B 重合),且 PCB = 30 ° ,则 CP 的长为  

来源:2021年四川省乐山市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

由沈康身教授所著,数学家吴文俊作序的《数学的魅力》一书中记载了这样一个故事:如图,三姐妹为了平分一块边长为1的祖传正方形地毯,先将地毯分割成七块,再拼成三个小正方形(阴影部分).则图中 AB 的长应是   

来源:2021年浙江省湖州市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

如图1, D O 上一点,点 C 在直径 BA 的延长线上,且 CDA = CBD

(1)判断直线 CD O 的位置关系,并说明理由;

(2)若 tan ADC = 1 2 AC = 2 ,求 O 的半径;

(3)如图2,在(2)的条件下, ADB 的平分线 DE O 于点 E ,交 AB 于点 F ,连结 BE .求 sin DBE 的值.

来源:2021年四川省宜宾市中考数学试卷
  • 更新:2021-08-15
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, BAC = 30 ° ACB = 45 ° AB = 2 ,点 P 从点 A 出发沿 AB 方向运动,到达点 B 时停止运动,连结 CP ,点 A 关于直线 CP 的对称点为 A ' ,连结 A ' C A ' P .在运动过程中,点 A ' 到直线 AB 距离的最大值是   ;点 P 到达点 B 时,线段 A ' P 扫过的面积为   

来源:2021年浙江省嘉兴市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

如图,点 E 在正方形 ABCD AD 上,点 F 是线段 AB 上的动点(不与点 A 重合), DF AC 于点 G GH AD 于点 H AB = 1 DE = 1 3

(1)求 tan ACE

(2)设 AF = x GH = y ,试探究 y x 的函数关系式(写出 x 的取值范围);

(3)当 ADF = ACE 时,判断 EG AC 的位置关系并说明理由.

来源:2021年四川省南充市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图,已知正方形 ABCD 边长为1, E AB 边上一点,以点 D 为中心,将 ΔDAE 按逆时针方向旋转得 ΔDCF ,连接 EF ,分别交 BD CD 于点 M N .若 AE DN = 2 5 ,则 sin EDM =   

来源:2021年新疆生产建设兵团中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

图1是邻边长为2和6的矩形,它由三个小正方形组成,将其剪拼成不重叠、无缝隙的大正方形(如图 2 ) ,则图1中所标注的 d 的值为   ;记图1中小正方形的中心为点 A B C ,图2中的对应点为点 A ' B ' C ' .以大正方形的中心 O 为圆心作圆,则当点 A ' B ' C ' 在圆内或圆上时,圆的最小面积为   

来源:2021年浙江省温州市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

如图,先将矩形纸片 ABCD 沿 EF 折叠 ( AB 边与 DE CF 的异侧), AE CF 于点 G ;再将纸片折叠,使 CG AE 在同一条直线上,折痕为 GH .若 AEF = α ,纸片宽 AB = 2 cm ,则 HE =    cm

来源:2021年山东省威海市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

已知在 ΔACD 中, P CD 的中点, B AD 延长线上的一点,连结 BC AP

(1)如图1,若 ACB = 90 ° CAD = 60 ° BD = AC AP = 3 ,求 BC 的长.

(2)过点 D DE / / AC ,交 AP 延长线于点 E ,如图2所示,若 CAD = 60 ° BD = AC ,求证: BC = 2 AP

(3)如图3,若 CAD = 45 ° ,是否存在实数 m ,当 BD = mAC 时, BC = 2 AP ?若存在,请写出 m 的值;若不存在,请说明理由.

来源:2021年浙江省湖州市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

如图,点 D 在以 AB 为直径的 O 上,过 D O 的切线交 AB 延长线于点 C AE CD 于点 E ,交 O 于点 F ,连接 AD FD

(1)求证: DAE = DAC

(2)求证: DF AC = AD DC

(3)若 sin C = 1 4 AD = 4 10 ,求 EF 的长.

来源:2021年四川省自贡市中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

在我们学习过的数学教科书中,有一个数学活动,若身旁没有量角器或三角尺,又需要作 60 ° 30 ° 15 ° 等大小的角,可以采用如下方法:

操作感知:

第一步:对折矩形纸片 ABCD ,使 AD BC 重合,得到折痕 EF ,把纸片展开(如图1 )

第二步:再一次折叠纸片,使点 A 落在 EF 上,并使折痕经过点 B ,得到折痕 BM ,同时得到线段 BN (如图 2 )

猜想论证:

(1)若延长 MN BC 于点 P ,如图3所示,试判定 ΔBMP 的形状,并证明你的结论.

拓展探究:

(2)在图3中,若 AB = a BC = b ,当 a b 满足什么关系时,才能在矩形纸片 ABCD 中剪出符合(1)中结论的三角形纸片 BMP

来源:2021年青海省中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

初中数学解直角三角形试题