初中数学

ABCD 中, BAD = α DE 平分 ADC ,交对角线 AC 于点 G ,交射线 AB 于点 E ,将线段 EB 绕点 E 顺时针旋转 1 2 α 得线段 EP

(1)如图1,当 α = 120 ° 时,连接 AP ,请直接写出线段 AP 和线段 AC 的数量关系;

(2)如图2,当 α = 90 ° 时,过点 B BF EP 于点,连接 AF ,请写出线段 AF AB AD 之间的数量关系,并说明理由;

(3)当 α = 120 ° 时,连接 AP ,若 BE = 1 2 AB ,请直接写出 ΔAPE ΔCDG 面积的比值.

来源:2021年辽宁省本溪市中考数学试卷
  • 更新:2021-08-19
  • 题型:未知
  • 难度:未知

如图1, D O 上一点,点 C 在直径 BA 的延长线上,且 CDA = CBD

(1)判断直线 CD O 的位置关系,并说明理由;

(2)若 tan ADC = 1 2 AC = 2 ,求 O 的半径;

(3)如图2,在(2)的条件下, ADB 的平分线 DE O 于点 E ,交 AB 于点 F ,连结 BE .求 sin DBE 的值.

来源:2021年四川省宜宾市中考数学试卷
  • 更新:2021-08-15
  • 题型:未知
  • 难度:未知

如图,在边长为 6 3 的正六边形 ABCDEF 中,连接 BE CF ,其中点 M N 分别为 BE CF 上的动点.若以 M N D 为顶点的三角形是等边三角形,且边长为整数,则该等边三角形的边长为   

来源:2021年江西省中考数学试卷
  • 更新:2021-08-19
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, BAC = 30 ° ACB = 45 ° AB = 2 ,点 P 从点 A 出发沿 AB 方向运动,到达点 B 时停止运动,连结 CP ,点 A 关于直线 CP 的对称点为 A ' ,连结 A ' C A ' P .在运动过程中,点 A ' 到直线 AB 距离的最大值是   ;点 P 到达点 B 时,线段 A ' P 扫过的面积为   

来源:2021年浙江省嘉兴市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

如图①,甲、乙都是高为6米的长方体容器,容器甲的底面 ABCD 是正方形,容器乙的底面 EFGH 是矩形.如图②,已知正方形 ABCD 与矩形 EFGH 满足如下条件:正方形 ABCD 外切于一个半径为5米的圆 O ,矩形 EFGH 内接于这个圆 O EF = 2 EH

(1)求容器甲、乙的容积分别为多少立方米?

(2)现在我们分别向容器甲、乙同时持续注水(注水前两个容器是空的),一开始注水流量均为25立方米 / 小时,4小时后,把容器甲的注水流量增加 a 立方米 / 小时,同时保持容器乙的注水流量不变,继续注水2小时后,把容器甲的注水流量再一次增加50立方米 / 小时,同时容器乙的注水流量仍旧保持不变,直到两个容器的水位高度相同,停止注水.在整个注水过程中,当注水时间为 t 时,我们把容器甲的水位高度记为 h ,容器乙的水位高度记为 h ,设 h - h = h ,已知 h (米 ) 关于注水时间 t (小时)的函数图象如图③所示,其中 MN 平行于横轴,根据图中所给信息,解决下列问题:

①求 a 的值;

②求图③中线段 PN 所在直线的解析式.

来源:2021年江苏省苏州市中考数学试卷
  • 更新:2021-08-20
  • 题型:未知
  • 难度:未知

如图,点 E 在正方形 ABCD AD 上,点 F 是线段 AB 上的动点(不与点 A 重合), DF AC 于点 G GH AD 于点 H AB = 1 DE = 1 3

(1)求 tan ACE

(2)设 AF = x GH = y ,试探究 y x 的函数关系式(写出 x 的取值范围);

(3)当 ADF = ACE 时,判断 EG AC 的位置关系并说明理由.

来源:2021年四川省南充市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图,在矩形 ABCD 中, AB = 3 cm AD = 3 cm .动点 P 从点 A 出发沿折线 AB - BC 向终点 C 运动,在边 AB 上以 1 cm / s 的速度运动;在边 BC 上以 3 cm / s 的速度运动,过点 P 作线段 PQ 与射线 DC 相交于点 Q ,且 PQD = 60 ° ,连接 PD BD .设点 P 的运动时间为 x ( s ) ΔDPQ ΔDBC 重合部分图形的面积为 y ( c m 2 )

(1)当点 P 与点 A 重合时,直接写出 DQ 的长;

(2)当点 P 在边 BC 上运动时,直接写出 BP 的长(用含 x 的代数式表示);

(3)求 y 关于 x 的函数解析式,并写出自变量 x 的取值范围.

来源:2021年吉林省中考数学试卷
  • 更新:2021-08-21
  • 题型:未知
  • 难度:未知

如图,已知正方形 ABCD 边长为1, E AB 边上一点,以点 D 为中心,将 ΔDAE 按逆时针方向旋转得 ΔDCF ,连接 EF ,分别交 BD CD 于点 M N .若 AE DN = 2 5 ,则 sin EDM =   

来源:2021年新疆生产建设兵团中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, ACB = 90 ° A = 60 ° ,点 D AB 的中点,连接 CD ,将线段 CD 绕点 D 顺时针旋转 α ( 60 ° < α < 120 ° ) 得到线段 ED ,且 ED 交线段 BC 于点 G CDE 的平分线 DM BC 于点 H

(1)如图1,若 α = 90 ° ,则线段 ED BD 的数量关系是    GD CD =   

(2)如图2,在(1)的条件下,过点 C CF / / DE DM 于点 F ,连接 EF BE

①试判断四边形 CDEF 的形状,并说明理由;

②求证: BE FH = 3 3

(3)如图3,若 AC = 2 tan ( α - 60 ° ) = m ,过点 C CF / / DE DM 于点 F ,连接 EF BE ,请直接写出 BE FH 的值(用含 m 的式子表示).

来源:2021年湖南省岳阳市中考数学试卷
  • 更新:2021-08-21
  • 题型:未知
  • 难度:未知

如图,先将矩形纸片 ABCD 沿 EF 折叠 ( AB 边与 DE CF 的异侧), AE CF 于点 G ;再将纸片折叠,使 CG AE 在同一条直线上,折痕为 GH .若 AEF = α ,纸片宽 AB = 2 cm ,则 HE =    cm

来源:2021年山东省威海市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

图1是邻边长为2和6的矩形,它由三个小正方形组成,将其剪拼成不重叠、无缝隙的大正方形(如图 2 ) ,则图1中所标注的 d 的值为   ;记图1中小正方形的中心为点 A B C ,图2中的对应点为点 A ' B ' C ' .以大正方形的中心 O 为圆心作圆,则当点 A ' B ' C ' 在圆内或圆上时,圆的最小面积为   

来源:2021年浙江省温州市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

已知在 ΔACD 中, P CD 的中点, B AD 延长线上的一点,连结 BC AP

(1)如图1,若 ACB = 90 ° CAD = 60 ° BD = AC AP = 3 ,求 BC 的长.

(2)过点 D DE / / AC ,交 AP 延长线于点 E ,如图2所示,若 CAD = 60 ° BD = AC ,求证: BC = 2 AP

(3)如图3,若 CAD = 45 ° ,是否存在实数 m ,当 BD = mAC 时, BC = 2 AP ?若存在,请写出 m 的值;若不存在,请说明理由.

来源:2021年浙江省湖州市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

如图,点 D 在以 AB 为直径的 O 上,过 D O 的切线交 AB 延长线于点 C AE CD 于点 E ,交 O 于点 F ,连接 AD FD

(1)求证: DAE = DAC

(2)求证: DF AC = AD DC

(3)若 sin C = 1 4 AD = 4 10 ,求 EF 的长.

来源:2021年四川省自贡市中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

在我们学习过的数学教科书中,有一个数学活动,若身旁没有量角器或三角尺,又需要作 60 ° 30 ° 15 ° 等大小的角,可以采用如下方法:

操作感知:

第一步:对折矩形纸片 ABCD ,使 AD BC 重合,得到折痕 EF ,把纸片展开(如图1 )

第二步:再一次折叠纸片,使点 A 落在 EF 上,并使折痕经过点 B ,得到折痕 BM ,同时得到线段 BN (如图 2 )

猜想论证:

(1)若延长 MN BC 于点 P ,如图3所示,试判定 ΔBMP 的形状,并证明你的结论.

拓展探究:

(2)在图3中,若 AB = a BC = b ,当 a b 满足什么关系时,才能在矩形纸片 ABCD 中剪出符合(1)中结论的三角形纸片 BMP

来源:2021年青海省中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

如图,正方形 ABCD 的对角线相交于点 O ,点 E 在边 BC 上,点 F CB 的延长线上, EAF = 45 ° AE BD 于点 G tan BAE = 1 2 BF = 2 ,则 FG =   

来源:2021年湖北省襄阳市中考数学试卷
  • 更新:2021-08-01
  • 题型:未知
  • 难度:未知

初中数学解直角三角形试题