如图,在矩形 ABCD 中, AB = 3 cm , AD = 3 cm .动点 P 从点 A 出发沿折线 AB - BC 向终点 C 运动,在边 AB 上以 1 cm / s 的速度运动;在边 BC 上以 3 cm / s 的速度运动,过点 P 作线段 PQ 与射线 DC 相交于点 Q ,且 ∠ PQD = 60 ° ,连接 PD , BD .设点 P 的运动时间为 x ( s ) , ΔDPQ 与 ΔDBC 重合部分图形的面积为 y ( c m 2 ) .
(1)当点 P 与点 A 重合时,直接写出 DQ 的长;
(2)当点 P 在边 BC 上运动时,直接写出 BP 的长(用含 x 的代数式表示);
(3)求 y 关于 x 的函数解析式,并写出自变量 x 的取值范围.
以直线为对称轴的抛物线过点A(3,0)和点B(0,3),求此抛物线的解析式.
如图:已知,梯形ABCD中,∠B=90°,AD∥BC,AB⊥BC,AB=AD=3,BC=7. 求cos∠C.
已知抛物线.(1)用配方法把化为形式;(2)并指出:抛物线的顶点坐标是,抛物线的对称轴方程是, 抛物线与x轴交点坐标是,当x时,y随x的增大而增大. 解
( 本题12分) 已知:如图,在梯形ABCD中,AD∥BC,BC=DC,CF平分∠BCD,DF∥AB,BF的延长线交DC于点E。 求证:(1)△BFC≌△DFC;(2)AD=DE
( 本题10分) 某批发商欲将一批海产品由A地运往B地,汽车货运公司和铁路货运公司均开办了海产品运输业务.已知运输路程为120千米,汽车和火车的速度分别为60千米/时和100千米/时.两货物公司的收费项目和收费标准如下表所示:
注:“元/吨·千米”表示每吨货物每千米的运费;“元/吨·小时”表示每吨货物每小时的冷藏费.(1)设该批发商待运的海产品有x(吨),汽车货运公司和铁路货运公司所要收取的费用分别为y1(元)和y2(元),试求出y1和y2和与x的函数关系式;(2)若该批发商待运的海产品不少于30吨,为节省运费,他应该选择哪个货运公司承担运输业务?