如图,正方形ABCD的边CD在正方形ECGF的边CE上,B、C、G三点在一条直线上,且边长分别为2和3,在BG上截取GP=2,连结AP、PF.(1)观察猜想AP与PF之间的大小关系,并说明理由;(2)图中是否存在通过旋转、平移、反射等变换能够互相重合的两个三角形?若存在,请说明变换过程;若不存在,请说明理由;(3)若把这个图形沿着PA、PF剪成三块,请你把它们拼成一个大正方形,在原图上画出示意图,并请求出这个大正方形的面积.
如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=α.将△BOC绕点C按顺时针方向旋转60°得△ADC,连接OD. (1)求证:△COD是等边三角形; (2)当α=150°时,试判断△AOD的形状,并说明理由; (3)探究:当α为多少度时,△AOD是等腰三角形?
小聪和小明沿同一条路同时从学校出发到新华书店买书,学校与书店的路程是4千米,小聪骑自行车,小明步行,当小聪从原路回到学校时,小明刚好到达书店,图中折线O-A-B-C和线段OD分别表示两人离学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系,请根据图象回答下列问题: (1)小聪在新华书店买书的时间为________分钟,小聪返回学校的速度为_______千米/分钟; (2)请你求出小明离开学校的路程(千米)与所经过的时间(分钟)之间的函数关系; (3)当小聪与小明迎面相遇时,他们离学校的路程是多少千米?
某中学八年(1)班利用70元钱的班费,同时购买单价分别为3元、2元、1元的甲、乙、丙三种纪念品,奖励参加校“元旦会演”活动的同学。已知购买乙种纪念品件数比购买甲种纪念品的件数多2件,而购买甲种纪念品的件数不少于10件,且购买甲种纪念品的费用不超过总费用的一半,若购买的甲、乙、丙三种纪念品恰好用了70元钱,问可有几种购买方案?每种方案中购买的甲、乙、丙三种纪念品各有多少件?
我们约定:如果身高在选定标准的±2%范围之内都称为“普通身高”.为了解某校九年级男生中具有“普通身高”的人数,我们从该校九年级男生中随机选出10名男生,分别测量出他们的身高(单位:cm)收集并整理如下统计表:
根据以上表格信息,解答如下问题: (1)计算这组数据的三个统计量:平均数、中位数和众数; (2)请你选择一个统计量作为选定标准,找出这10名具有“普通身高”的是哪几位男生?并说明理由; (3)若该年级共有280名男生,按(2)中选定标准,请你估算出该年级男生中“普通身高”的人数约有多少名?
如图,点A、E、F、C在一条直线上,AE=CF,过点E、F分别作DE垂直AC,BF垂直AC ,若AB="CD" ,那么BD平分EF,请说明理由。