小明、小华、小刚三人在一起讨论一个多项式.小明:它是个三次多项式,且有三项;小华:其中三次项系数是1;小刚:在进行分解因式的过程中用到了提公因式法和公式法.请你试着写出符合上述条件的多项式,并将这个多项式分解因式.
如图1,菱形ABCD中,∠A=60°,点P从A出发,以2cm/s的速度沿边AB、BC、CD匀速运动到D终止,点Q从A与P同时出发,沿边AD匀速运动到D终止,设点P运动的时间为t(s).△APQ的面积S(cm2)与t(s)之间函数关系的图象由图2中的曲线段OE与线段EF、FG给出. (1)求点Q运动的速度; (2)求图2中线段FG的函数关系式; (3)问:是否存在这样的t,使PQ将菱形ABCD的面积恰好分成1:5的两部分?若存在,求出这样的t的值;若不存在,请说明理由.
如图,直线x=-4与x轴交于点E,一开口向上的抛物线过原点交线段OE于点A,交直线x=-4于点B,过B且平行于x轴的直线与抛物线交于点C,直线OC交直线AB于D,且AD:BD=1:3. (1)求点A的坐标; (2)若△OBC是等腰三角形,求此抛物线的函数关系式.
已知甲、乙两种原料中均含有A元素,其含量及每吨原料的购买单价如下表所示:
已知用甲原料提取每千克A元素要排放废气1吨,用乙原料提取每千克A元素要排放废气0.5吨,若某厂要提取A元素20千克,并要求废气排放不超过16吨,问:该厂购买这两种原料的费用最少是多少万元?
如图,四边形ABCD中,对角线AC与BD相交于O,在①AB∥CD;②AO=CO;③AD=BC中任意选取两个作为条件,“四边形ABCD是平行四边形”为结论构成命题. (1)以①②作为条件构成的命题是真命题吗?若是,请证明;若不是,请举出反例; (2)写出按题意构成的所有命题中的假命题,并举出反例加以说明.(命题请写成“如果…,那么….”的形式)
某校为了解“课程选修”的情况,对报名参加“艺术鉴赏”、“科技制作”、“数学思维”、“阅读写作”这四个选修项目的学生(每人限报一项)进行抽样调查.下面是根据收集的数据绘制的两幅不完整的统计图. 请根据图中提供的信息,解答下面的问题: (1)此次共调查了名学生,扇型统计图中“艺术鉴赏”部分的圆心角是度. (2)请把这个条形统计图补充完整. (3)现该校共有800名学生报名参加这四个选修项目,请你估计其中有多少名学生选修“科技制作”项目.