如图,已知在 中, ,以 为直径的 与 交于点 ,点 是 的中点,连接 , .
(1)若 ,求 ;
(2)求证: 是 的切线.
如图, 中, , , .
(1)请画出将 向右平移8个单位长度后的△ ;
(2)求出 的余弦值;
(3)以 为位似中心,将△ 缩小为原来的 ,得到△ ,请在 轴右侧画出△ .
如图,以 的 边上一点 为圆心,经过 , 两点且与 边交于点 ,点 为 的下半圆弧的中点,连接 交线段 于点 ,若 .
(1)求证: 是 的切线;
(2)若 , ,求 的半径 及 .
如图,在中,,以为直径作,点为上一点,且,连接并延长交的延长线于点.
(1)判断直线与的位置关系,并说明理由;
(2)若,,求圆的半径及的长.
如图,线段 是 的直径,弦 于点 ,点 是 上任意一点, , .
(1)求 的半径 的长度;
(2)求 ;
(3)直线 交直线 于点 ,直线 交 于点 ,连接 交 于点 ,求 的值.
如图,点 是正方形 边 上一点,连接 ,作 于点 , 于点 ,连接 .
(1)求证: ;
(2)已知 ,四边形 的面积为24,求 的正弦值.
如图,在 中, 是对角线 、 的交点, , ,垂足分别为点 、 .
(1)求证: .
(2)若 , ,求 的值.
如图, 中, ,以点 为圆心, 为半径作 , 为 上一点,连接 、 , , 平分 .
(1)求证: 是 的切线;
(2)延长 、 相交于点 ,若 ,求 的值.
如图所示,的顶点在正方形对角线的延长线上,与交于点,连接、,满足.
(1)求证:.
(2)若正方形的边长为1,,求的值.
如图,为的直径,为上的一点,,,的延长线交于点,连接.
(1)求证:是的切线;
(2)若为的中点,求的值.
如图,中,,为延长线上一点,,过点作于点,交于点,连接,.
(1)求证:;
(2)求的度数;
(3)当时,求的值.
如图1, 是 的直径,直线 与 相切于点 ,直线 与 相切于点 ,点 (异于点 在 上,点 在 上,且 ,延长 与 相交于点 ,连接 并延长交 于点 .
(1)求证: 是 的切线;
(2)求证: ;
(3)如图2,连接 并延长与 分别相交于点 、 ,连接 .若 , ,求 .
如图,网格中每个小方格都是边长为1个单位长度的正方形,点 , , 的坐标分别为 , , .先将 沿一个确定方向平移,得到△ ,点 的对应点 的坐标是 ;再将△ 绕原点 顺时针旋转 ,得到△ ,点 的对应点为 .
(1)画出△ ,并直接写出点 的坐标;
(2)画出△ ,并直接写出 的值.
如图,已知 的顶点坐标分别为 , , .动点 , 同时从 点出发, 沿 , 沿折线 ,均以每秒1个单位长度的速度移动,当一个动点到达终点 时,另一个动点也随之停止移动,移动的时间记为 秒.连接 .
(1)求直线 的解析式;
(2)移动过程中,将 沿直线 翻折,点 恰好落在 边上点 处,求此时 值及点 的坐标;
(3)当点 , 移动时,记 在直线 右侧部分的面积为 ,求 关于时间 的函数关系式.