如图,在 中, 是直径, 是弦, ,垂足为 ,过点 的 的切线与 延长线交于点 ,连接 .
(1)求证: 为 的切线;
(2)若 半径为3, ,求 .
如图, 中, ,以点 为圆心, 为半径作 , 为 上一点,连接 、 , , 平分 .
(1)求证: 是 的切线;
(2)延长 、 相交于点 ,若 ,求 的值.
如图,在菱形 中,对角线 与 相交于点 , , ,点 在边 上, ,连结 交 于点 .
(1)求 的长.
(2) 的值为 .
如图,点 为以 为直径的半圆的圆心,点 , 在直径 上,点 , 在 上,四边形 为正方形,点 在 上运动(点 与点 , 不重合),连接 并延长交 的延长线于点 ,连接 交 于点 ,连接 .
(1)求 的值;
(2)求 的值;
(3)令 , ,直径 , 是常数),求 关于 的函数解析式,并指明自变量 的取值范围.
如图所示,四边形 为正方形,在 中, , , 的延长线与 的延长线交于点 ,点 、 、 在同一条直线上.
(1)求证: ;
(2)当 时,求 的值;
(3)当 , 时,求 的值.
如图,四边形 中, , , , ,以 为圆心, 为半径作圆,延长 交 于点 ,延长 交 于点 ,连结 ,交 于点 .
(1)求证: 为 的切线;
(2)求 的值;
(3)求线段 的长.
如图,边长为1的正方形 中,点 为 的中点.连接 ,将 沿 折叠得到 , 交 于点 ,求 的长.
如图,在 中, ,作 的垂直平分线交 于点 ,延长 至点 ,使 .
(1)若 ,求 的周长;
(2)若 ,求 的值.
如图, 内接于 , 是 的直径 的延长线上一点, .过圆心 作 的平行线交 的延长线于点 .
(1)求证: 是 的切线;
(2)若 , ,求 的半径及 的值.
如图,已知AB是⊙O的直径,⊙O经过 的直角边DC上的点F,交AC边于点E,点F是弧EB的中点, ,连接AF.
(1)求证:直线CD是⊙O切线.
(2)若 , ,求 的值.
如图,在 中, ,以 为直径的 分别交 、 于点 、 ,点 在 的延长线上,且 .
(1)求证: 是 的切线;
(2)若 的直径为4, ,求 .
问题探究:
小红遇到这样一个问题:如图1, 中, , , 是中线,求 的取值范围.她的做法是:延长 到 ,使 ,连接 ,证明 ,经过推理和计算使问题得到解决.
请回答:(1)小红证明 的判定定理是: ;
(2) 的取值范围是 ;
方法运用:
(3)如图2, 是 的中线,在 上取一点 ,连结 并延长交 于点 ,使 ,求证: .
(4)如图3,在矩形 中, ,在 上取一点 ,以 为斜边作 ,且 ,点 是 的中点,连接 , ,求证: .
问题呈现
如图1,在边长为1的正方形网格中,连接格点 , 和 , , 和 相交于点 ,求 的值.
方法归纳
求一个锐角的三角函数值,我们往往需要找出(或构造出)一个直角三角形.观察发现问题中 不在直角三角形中,我们常常利用网格画平行线等方法解决此类问题,比如连接格点 , ,可得 ,则 ,连接 ,那么 就变换到 中.
问题解决
(1)直接写出图1中 的值为 2 ;
(2)如图2,在边长为1的正方形网格中, 与 相交于点 ,求 的值;
思维拓展
(3)如图3, , ,点 在 上,且 ,延长 到 ,使 ,连接 交 的延长线于点 ,用上述方法构造网格求 的度数.
如图, 为圆 的直径, 为圆 上一点, 为 延长线一点,且 , 于点 .
(1)求证:直线 为圆 的切线;
(2)设 与圆 交于点 , 的延长线与 交于点 ,已知 , , ,求 的值.