如图,点 O 为以 AB 为直径的半圆的圆心,点 M , N 在直径 AB 上,点 P , Q 在 AB ̂ 上,四边形 MNPQ 为正方形,点 C 在 QP ̂ 上运动(点 C 与点 P , Q 不重合),连接 BC 并延长交 MQ 的延长线于点 D ,连接 AC 交 MQ 于点 E ,连接 OQ .
(1)求 sin ∠ AOQ 的值;
(2)求 AM MN 的值;
(3)令 ME = x , QD = y ,直径 AB = 2 R ( R > 0 , R 是常数),求 y 关于 x 的函数解析式,并指明自变量 x 的取值范围.
如图,二次函数的图象与轴交于A(-3,0)和B(1,0)两点,交轴于点C(0,3),点C、D是二次函数图象上的一对对称点,一次函数的图象过点B、D. (1)请直接写出D点的坐标. (2)求二次函数的解析式. (3)根据图象直接写出使一次函数值大于二次函数值的的取值范围.
阅读:如图1,在△ABC中,BE是AC边上的中线, D是BC边上的一点,CD:BD=1:2,AD与BE相交于点P,求的值.小昊发现,过点A作AF∥BC,交BE的延长线于点F,通过构造△AEF,经过推理和计算能够使问题得到解决(如图2). (1)的值为 ; (2)参考小昊思考问题的方法,解决问题: 如图3,在△ABC中,∠ACB=90°,点D在BC的延长线上,AD与AC边上的中线BE的延长线交于点P,DC:BC:AC=1:2:3.求的值;若CD=2,求BP的长.
据专家分析,一般成人喝半斤低度白酒后,1.5小时内其血液中酒精含量y(毫克/百毫升)与时间x(时)的关系可近似地用二次函数y=﹣200x2+400x刻画;1.5小时后(包括1.5小时)y与x可近似地用反比例函数y=(k>0)刻画(如图所示). (1)根据上述数学模型计算: ①喝酒后几时血液中的酒精含量达到最大值?最大值为多少? ②当x=5时,y=45,求k的值. (2)按国家规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶”,不能驾车上路.参照上述数学模型,假设某驾驶员晚上20:00在家喝完半斤低度白酒,第二天早上7:00能否驾车去上班?请说明理由.
如图,AB是⊙O的直径,CD是⊙O的切线,切点为D,CD与AB的延长线相交于点E,∠ADC=60°. (1)求证:△ADE是等腰三角形; (2)若AD=2,求BE的长.
如图,某数学兴趣小组想测量一棵树CD的高度,他们先在点A处测得树顶C的仰角为30°,然后沿AD方向前行10m,到达B点,在B处测得树顶C的仰角高度为60°(A、B、D三点在同一直线上).请你根据他们测量数据计算这棵树CD的高度(结果精确到0.1m).(参考数据:≈1.414,≈1.732)