如图,在菱形 ABCD 中,对角线 AC 与 BD 相交于点 O , AC = 4 , BD = 8 ,点 E 在边 AD 上, AE = 1 3 AD ,连结 BE 交 AC 于点 M .
(1)求 AM 的长.
(2) tan ∠ MBO 的值为 .
(满分8分)如图,BD是⊙O的直径, A、C是⊙O上的两点,且AB=AC,AD与BC的延长线交于点E.(1)求证:△ABD∽△AEB;(2)若AD=1,DE=3,求BD的长.
(满分8分)为迎接市教育局开展的“创先争优”主题演讲活动,某校组织党员教师进行演讲预赛.学校将所有参赛教师的成绩(得分为整数,满分为100分)分成四组,绘制了不完整的统计图表如下:观察图表信息,回答下列问题:(1)参赛教师共有 人;(2)如果将各组的组中值视为该组的平均成绩,请你估算所有参赛教师的平均成绩;(3)成绩落在第一组的恰好是两男两女四位教师,学校从中随机挑选两位教师参加市教育局组织的决赛.通过列表或画树状图求出挑选的两位教师是一男一女的概率.
(满分7分)五月石榴红,枝头鸟儿歌.一只小鸟从石榴树上的A处沿直线飞到对面一房屋的顶部C处.从A处看房屋顶部C处的仰角为,看房屋底部D处的俯角为,石榴树与该房屋之间的水平距离为米,求出小鸟飞行的距离AC和房屋的高度CD.
(满分6分)若关于x的一元二次方程的两个实数根为、,且满足,试求出方程的两个实数根及k的值.
(本题9分)如图(1),Rt△ABC中,∠ACB=-90°,CD⊥AB,垂足为D.AF平分∠CAB,交CD于点E,交CB于点F(1)求证:CE=CF.(2)将图(1)中的△ADE沿AB向右平移到△A’D’E’的位置,使点E’落在BC边上,其它条件不变,如图(2)所示.试猜想:BE'与CF有怎样的数量关系?请证明你的结论.